LLM-Based Code Development Model with Active Prompt
Adjustment and On-Device Validation

Hong Su'

1School of Computer Science, Chengdu University of Information Technology

January 28, 2025

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

LLM-Based Code Development Model with Active
Prompt Adjustment and On-Device Validation

Hong Su

Abstract—Large language models (LLMs) have been widely
adopted to assist in IoT device code development. However,
prompts are typically provided by the user and adjusted based
on the user’s judgment when the generated code fails to function
as expected. As a result, users often have to test candidate
solutions one by one. In this paper, we propose an on-device
development model that dynamically adjusts prompts based
on on-device validation results and device parameter retrieval,
creating a closed-loop process for code development. The process
begins with the user providing requirements and device-specific
information to the LLM, which generates both functional and
validation code. The generated code is validated directly on the
device by the model. If the code fails continuously beyond a
specified threshold, the model iteratively refines the prompt by
modifying its scope and word order. Furthermore, candidate
solutions from the LLM are organized into a tree structure,
enabling the efficient reuse of common steps across solutions.
The results show that prompt adjustments based on device
parameters and validation enhance accuracy, while the tree
structure approach improves the efficiency of testing candidate
solutions by 25%.

Index Terms—Active Development Model, Large Language
Models (LLMs), On-Device Validation, Active Prompt Adjust-
ment

I. INTRODUCTION

The integration of Large Language Models (LLMs) into
the development of Internet of Things (IoT) devices has
gained significant attention due to the increasing demand
for automated and efficient development workflows [1] [2].
Traditionally, when users seek code or solutions for IoT devel-
opment, they manually extract relevant information from the
device, combine it with their requirements, and form structured
prompts that are fed into LLMs to generate corresponding
code [3] [4]. This process, while powerful, often faces sev-
eral challenges that hinder its effectiveness in practical IoT
development scenarios.

One of the primary challenges in using LLMs for IoT
development is the user’s responsibility to correctly identify
and provide the necessary information for the LLM, without
the ability to adjust the prompt based on on-device validation
and real-time device data. LLMs are highly dependent on the
quality of the input prompts, and the results they generate are
directly influenced by the clarity, specificity, and completeness
of these prompts [5]. If the prompt is vague, incomplete,

H. Su is with the School of Computer Science, Chengdu University of
Information Technology, Chengdu, China, 610041.
E-mail: suguest@126.com.

or misleading, it can lead to irrelevant or incorrect outputs,
regardless of how many attempts the user makes [6]. This
presents a significant barrier, as users often lack the expertise
to formulate the most effective prompts, further complicating
the process.

Providing more information in a prompt does not always
lead to better results. The scope of the prompt plays a pivotal
role in determining the accuracy of the LLM’s response
[7]. In this context, the scope refers to the range or extent
of information included in the prompt; for simplicity, this
paper considers the scope as the different words within the
prompt. A prompt that is too broad may introduce irrelevant
or contradictory details, while one that is too narrow may
exclude essential context. Consequently, dynamically adjusting
the prompt’s scope to align with the specific requirements and
constraints of the IoT device, as well as incorporating on-
device validation results, is critical for generating accurate and
contextually relevant outputs.

For instance, consider the case of a user working with an
Ubuntu Qt Python application on a touch-screen device in
landscape mode. By default, the onboard keyboard (one of the
Ubuntu on-screen keyboards ') may be hidden in full-screen
mode on Ubuntu 22.04 due to a misalignment of the keyboard
with the window. If the user inputs a generic prompt like
"Ubuntu Qt Python full screen landscape onboard," the LLM
might not provide any useful information. This is because the
issue is specific to the device and its configuration, and the
prompt may not include the correct parameters to generate
a relevant solution. This example highlights a fundamental
limitation of the current passive model, where users must
manually craft prompts that may not always lead to effective
solutions.

To address these challenges, this paper proposes an active
approach for IoT device development that integrates LLMs
with an on-device parameter collection, prompt adjustment
strategies, and on-device validation. In this active development
mode, device parameters are dynamically extracted and used
to refine the prompts, adjusting the scope iteratively based
on the validation results. The system continues to adjust the
prompt until a workable solution is identified. Furthermore,
when multiple potential solutions are generated, a hierarchical
judgment tree structure is used to evaluate their applicability.
Solutions are grouped into subtrees based on shared character-
istics, with incompatible solutions filtered out early. Finally, a
validation step ensures that the generated solution is tested on
the actual device, guaranteeing its relevance and functionality.

Thttps://manpages.ubuntu.com/manpages/focal/man1/onboard. 1.html

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

The term "active" refers to the closed-loop process in IoT
device development, where tasks such as code generation,
validation, device parameter retrieval, and prompt adjustments
are managed automatically by the model. This stands in
contrast to traditional models where users are responsible
for manually preparing and adjusting prompts, performing
validations, and collecting error information. By automating
these processes, the proposed model enhances accuracy and
ensures the correct solution is identified without relying solely
on user judgment.

The contributions of this paper are summarized as follows:
(1) Active IoT Device Development Mode: This paper in-
troduces an active development mode that integrates LLMs
with real-time device parameters, dynamic prompt adjustment
strategies, and on-device validation. Unlike traditional passive
models, where users manually craft prompts, our approach au-
tomatically adjusts the prompts based on on-device validation
results and relevant parameters collected from the IoT device.
By fine-tuning the prompt scope, the system ensures that the
LLM generates solutions that are more relevant and applicable
to the specific IoT device context, improving the quality and
applicability of the generated solutions. (2) Impact of Prompt
Scope: We highlight the critical impact that the scope of the
prompt has on the output quality of generated code. A prompt
that is too broad or too narrow can lead to inaccurate or
incomplete results. Our approach emphasizes the importance
of dynamic scope adjustment through on-device validation,
ensuring that the generated solutions are tailored to the IoT
device’s specific needs and constraints. (3) Hierarchical Judg-
ment Tree: To address the issue of multiple potential solutions
being generated, we introduce a hierarchical judgment tree that
organizes solutions based on their relevance and applicability
to the IoT device. This structure enables efficient evaluation
by filtering out incompatible solutions early in the process,
ensuring that only the most viable solutions are considered
for further development.

The rest of this paper is organized as follows. Section II
provides an overview of related work. Section III introduces
the model for active on-device code development. Section IV
discusses the impact of unrelated prompt words and word or-
der on transformer outputs, highlighting the necessity of active
prompt adjustment. In Section V, we present the verification
results and perform an in-depth analysis. Finally, Section VI
concludes the paper with a summary of our contributions.

II. RELATED WORK

The integration of Large Language Models (LLMs) with
Internet of Things (IoT) device development has gained in-
creasing attention in recent years, driven by the need for
automated, efficient development workflows. This section re-
views the existing literature on LLMs in IoT development,
prompt engineering, validation strategies, and solution evalu-
ation frameworks.

A. LLM-based Code Generation

1) LLMs in IoT Development: Several studies have ex-
plored the use of LLMs for code generation and development

support in IoT systems. For example, LLMs such as OpenAl’s
GPT and Google’s BERT have been employed to automate
the generation of code snippets for embedded systems (e.g.,
Arduino, Raspberry Pi) and IoT devices [8], [9]. These studies
focus on the ability of LLMs to generate programming code
based on user input, aiming to streamline the development
process. However, a common limitation of these systems is
that they heavily rely on user-crafted prompts, which often
require technical expertise, and fail to dynamically adapt to
the unique constraints and parameters of specific IoT devices.

2) Prompt Engineering and Dynamic Adjustments: Prompt
engineering is a key challenge when using LLMs for IoT
device development. Several works have addressed this issue
by proposing methods for dynamically adjusting prompts
based on context and feedback. Some approaches leverage
meta-prompting or iterative prompt refinement to improve the
quality of LLM outputs [10], [11]. However, these studies
primarily focus on static or pre-defined adjustment strategies
and do not incorporate on-device validation or dynamic scope
adjustments based on real-time device parameters.

In contrast, our approach emphasizes an active method
where the scope of the prompt is dynamically adjusted based
on the IoT device’s parameters and feedback from on-device
validation. This real-time feedback loop enables more precise
and relevant outputs, a feature that is often missing in the
existing methods.

3) Solution Evaluation and Decision Trees: The problem of
selecting the most relevant solution from multiple candidates
generated by LLMs has been addressed in various ways. Some
works use heuristic-based filtering to rank potential solutions
based on predefined criteria [12]. Others leverage decision
trees or rule-based systems to guide the selection of solutions
[13]. These approaches typically rely on a static evaluation
framework that does not adapt based on the specific context
of the IoT device.

In contrast, our approach introduces a hierarchical judgment
tree that evaluates solutions based on their applicability to the
IoT device. This structure categorizes solutions into subtrees,
allowing for efficient identification of the most relevant solu-
tions and filtering out incompatible ones early in the process.
The hierarchical tree is guided by real-time feedback from
the device, ensuring that the most promising solutions are
prioritized.

B. On-Device Validation

On-device validation is an important aspect of ensuring
that generated code works in real-world IoT environments.
Existing works on validation often focus on simulation-based
environments where generated solutions are tested against
predefined benchmarks [14]. While these methods ensure
correctness in a controlled environment, they lack the real-
time feedback required for optimizing prompts and adjusting
solutions based on specific device constraints.

Some studies, like those by [15] and [16], attempt to validate
solutions in the context of the hardware by testing them
on actual devices after the initial code generation. However,
these approaches are typically passive, relying on the user

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

to manually identify and test potential solutions, which can
be time-consuming and error-prone. In our work, we propose
an active IoT device development mode, where the system
automatically adjusts the prompts and solutions based on on-
device validation results, significantly reducing the need for
manual intervention.

C. Conclusion

While there has been significant progress in using LLMs
for IoT development, many existing approaches still face chal-
lenges related to the correct formulation of prompts, validation
of generated solutions, and selection of applicable solutions.
Our proposed active IoT device development mode addresses
these challenges by incorporating active prompt adjustment,
on-device validation, and a hierarchical solution evaluation
framework. By integrating these strategies, our approach aims
to enhance the efficiency, accuracy, and relevance of LLMs in
IoT device development.

III. ACTIVE ON BOARD CODE DEVELOPMENT MODEL
A. Motivation

Currently, when users need to develop code for IoT devices,
they must manually extract relevant device information, trans-
form it into prompts, and input it into a Large Language Model
(LLM). However, this approach presents several challenges.

(a) The user must provide accurate prompt information to
the LLM, which requires an understanding of the specific data
the LLM needs. However, users often fail to supply sufficient
or precise information, or they may provide misleading words,
which leads to incorrect results regardless of how many
attempts are made. As LLMs rely on the prompts provided by
users, their output is determined by the attention mechanism
of the transformer model, meaning the quality of the results
directly depends on the quality of the input prompts, as shown
in (1).

For example, in a Python Qt project running on an Ubuntu
device, the on-board keyboard might not appear in full-screen
landscape mode. If the user simply inputs the broad description
"Python Qt project in an Ubuntu" as the prompt, the LLM will
likely produce no useful information.

lated
result ', {promptl, prompt2, ...} (1)

(b) Scope of Prompts: Simply providing more information
does not necessarily lead to better results. As illustrated in (1),
the scope of the prompt (i.e., the information provided) needs
to be carefully adjusted. Users often lack the knowledge of
how to modify the prompt’s scope to obtain the correct result.
On-device information queries and validation can help in this
process by dynamically adjusting the prompt’s scope using
algorithms or models. For example, removing specific terms
(e.g., "Qt" or "Python") from the prompt may better align it
with the device’s requirements and improve the accuracy of
the generated response.

(c) Verification of Solutions: While LLMs can suggest
multiple solutions, they do not verify whether a solution works
on a specific [oT device. Users are left to manually test each

proposed solution, even though some may be incompatible
with the device. As shown in Equation (2), LLMs often
provide several possible solutions for the same prompt, but
not all of them are viable.

produce

prompt {Solutiony, Solutiony, ..., } 2)

Thus, we propose an active IoT device development model
that incorporates LLMs, collects device parameters, forms
prompts, dynamically adjusts the prompt scope, and validates
solutions until a workable solution is found. Additionally, if
there are multiple potential solutions, we organize them into
a decision tree. Solutions that share a common subtree can
be tested sequentially, while unrelated solutions can be tested
independently.

B. Active LLM-Based Development Model

The active LLM-based development model aims to opti-
mize [oT device code development by dynamically adjusting
prompts and validating solutions on the device. This approach
reduces the need for user interaction, enhances the efficiency
of code development, and improves the accuracy of results by
iteratively refining prompts based on validation feedback. The
process is illustrated in Figure 1, and the corresponding model
is called active LLM-based development model.

Definition 1: Active LLM-based development model
refers to a model which automatically collects information
from IoT devices, forms it into query prompts for LLMs, and
generates code. When a solution is proposed, it is tested on the
IoT device via the on-device interface. The validation results
are fed back as adjustments to the prompt. If the verification
fails, the model will either try another solution or modify
the prompts before feeding them back into the LLM. If the
verification succeeds, the process is complete. This validation
process guides the prompt adjustments, enabling the model
to automatically modify the prompts to solve the issue as
effectively as possible.

Active LLM-based development model has two key fea-
tures, active prompt adjustment and active validation.

Active Prompt Adjustment: Active Prompt Adjustment
refers to the dynamic modification of the input prompts based
on ongoing feedback from the IoT device. In the context
of LLM-based IoT device development, this process involves
iteratively refining the prompts provided to the large language
model (LLM). Initially, a prompt is generated based on the
user’s requirements and device-specific information. However,
as the model generates code and runs validation, the prompt
is adjusted to improve the accuracy and efficiency of the
generated code. This iterative adjustment ensures that the LLM
receives the most relevant and precise information at each step,
leading to more accurate solutions over time.

Active Validation: Active Validation refers to the process
of on-device, immediate validation of the generated code. This
feature requires the LLM to generate executable code that can
be tested directly on the IoT device. Active Validation involves
continuously assessing the performance of the generated so-
lution and providing immediate feedback that guides prompt
refinement. The feedback loop ensures that the generated code

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

is constantly optimized based on real-world results from the
device, thereby improving the overall quality and relevance of
the solution.

1) Active Prompt Adjustment Process Based on On-Device
Validation: The proposed method leverages active prompt
adjustment and on-device validation to iteratively refine in-
put prompts. This process ensures that all necessary device-
specific information is retrieved and that all possible prompt
combinations (in terms of scope and order) are explored. The
feedback loop is formalized as follows:

(1) Imitial Prompt: The user provides an initial query or
task description, which is fed into the LLM. This initial
prompt includes both user-defined requirements and any
preliminary device-specific information retrieved via the
device interface.

(2) Validation and Feedback: The LLM generates a poten-
tial solution based on the current prompt. This solution
is then validated by executing it on the IoT device, and
the outcome of this validation determines the next steps:

o Failure (—Success): If the solution does not meet
the requirements, the system retrieves any additional
device-specific information required by the LLM
and adjusts the prompt accordingly:

— Modify the scope of the prompt by adding or
removing terms.

— Change the order of the prompt components to
explore alternative input structures.

— Refine the phrasing of the prompt to better align
with the device context.

« Success (Success): If the solution meets the require-
ments, the process is terminated, and the solution is
accepted as valid.

(3) Prompt Adjustment: The system dynamically adjusts
the prompt using a combination of scope, order, and
phrasing refinements:

o Scope Adjustment: Iteratively expand or narrow
the prompt’s scope by adding relevant device-
specific information retrieved from the device in-
terface or removing irrelevant terms.

e Order Adjustment: Iteratively permute the order
of the prompt components to explore all possible
input sequences.

o Phrasing Refinement: Alter the phrasing of the
prompt to enhance clarity and better align with the
context of the IoT task.

2) Formal Description of the Process: The iterative process
can be described as:

LLM . Validate
Prompt; —— Solution; —— {Success, ~Success}

If =Success, the next prompt is adjusted as follows:

Prompt,,, = AdjustScope(Prompt;)
+ AdjustOrder(Prompt;)
+ IncorporateDevicelnfo(D) 3)

device Active Prompt Adjustment ' L

Output, target
runnable code

YR

Validation

prompt adaption

—)

5 \
Fetch device

information and

validation results

Feed prompt
to LLM

To gfv;equfremenf

& / °

Fig. 1. Active Prompt Adjustment Process

where D represents the device-specific information retrieved
from the IoT device interface.

3) Adjustment Algorithm for Prompt Refinement: In the
above process, three aspects of the prompt are adjusted:
the scope of the prompt, the order of the prompt, and the
device information. The adjustment of the scope is done
iteratively, i.e., the scope is either increased or decreased step
by step. In each adjustment, the order of the prompt is also
modified iteratively, meaning all possible orders are explored.
Meanwhile, the change in device information is based on the
information required by the Language Model (LLM). This
iterative adjustment process is formalized in Algorithm 1.

4) Brief Proof of Convergence and Correctness of the
Prompt Adjustment Algorithm: To prove that if there exists
a prompt capable of producing the correct code, then the
proposed methods of active prompt adjustment and validation
will ensure that the model eventually generates the correct
code, we outline the proof as follows:

a) Proof Outline:: Let P denote the set of all possible
prompts, and let pcorrect € P represent the specific prompt that
generates the correct code for the given IoT task.

b) Step 1: Assumption of Information Availability: When
a requirement or error information is submitted, the model can
retrieve any necessary device-related information through the
device interface. This ensures that all relevant information re-
quired for generating pcorrect can be accessed. Thus, the system
has access to all possible information needed to construct the
correct prompt.

c) Step 2: Prompt Scope and Order Adjustment: The
algorithm iteratively adjusts both the scope and order of the
prompt to ensure all possible combinations of prompts are
explored:

o The scope is dynamically modified by adding relevant
device-specific information or removing irrelevant terms.

o The order of prompt components is permuted to account
for variations in how the LLM interprets and prioritizes
different input structures.

« This iterative process ensures that every possible combi-
nation of prompt scope and order is eventually tested.

d) Step 3: Iterative Feedback Process: The model itera-
tively refines the prompt based on validation feedback:

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 1 Prompt Adjustment Based on Validation Feed-
back

1: Input: Initial prompt Py, IoT device interface D, and

validation feedback V
: Output: Refined prompt Py
: P« Py
while Validation fails (V) do

if Device information is required by the LLM then
Retrieve required device information via the inter-

face D

A i

7: P « IncorporateDevicelnfo(P, D)

8: end if

9: if Scope needs adjustment then

10: for each step in scope adjustment (increase or

decrease) do

11: P « AdjustScope(P)

12: if Validation succeeds (V) then

13: Break

14: end if

15: end for

16: end if

17: if Order needs adjustment then

18: for each permutation of the current prompt order

do

19: P « AdjustOrder(P)

20: if Validation succeeds (V) then

21: Break

22: end if

23: end for
24: end if

25: end while
26: Return P,

« If the generated code fails validation, the scope is adjusted
iteratively, either increasing (to include missing critical
details) or reducing (to eliminate irrelevant noise) the
prompt.

« Similarly, the order of prompt components is adjusted to
explore alternate interpretations by the LLM.

« This feedback-driven refinement guarantees the explo-
ration of all possible prompts within P.

e) Step 4: Inductive Hypothesis: Let Sy represent the set
of prompts that have undergone k adjustments. We hypothesize
that if peorrect € P, the iterative process will eventually reach
Pcorrect after a finite number of adjustments.

f) Step 5: Convergence:

o If peorrect lies within the scope of the current prompt,
the iterative process will refine the prompt to isolate and
retain the critical elements required for correctness.

o If peorect 1S Outside the current scope, the iterative expan-
sion of the prompt ensures that missing critical details are
eventually included.

« By exploring all permutations of scope and order, the
algorithm systematically converges on pcorrect-

g) Step 6: Termination: The process terminates once the
validation step confirms the correctness of the generated code.
Since the model iteratively refines the prompt to explore all

possible configurations, it is guaranteed to produce the correct
prompt and code, provided pcorrect €XiSts.
h) Conclusion: The proposed algorithm ensures:

1) Information Completeness: All relevant device-related
information required to construct the correct prompt is
accessible through the device interface.

2) Exhaustive Exploration: By iteratively adjusting the
scope and order of the prompt, the algorithm explores
all possible prompt configurations in P.

Thus, if a correct prompt peorrect €Xists, the model will
eventually produce the correct code. Conversely, if no correct
prompt exists, the generated code will be unrelated to the
device’s information, violating the attention mechanism of the
transformer, which inherently relies on input relevance.

C. Tree Structure for Parallel Acknowledgement

In many problem-solving scenarios, multiple candidate so-
lutions may be generated by the LLM. These solutions often
share common steps but may diverge at certain points as they
progress towards the final resolution. To optimize the search
for the most effective solution, we organize these solutions
into a tree structure. Each branch of the tree represents a
distinct candidate solution, with the nodes corresponding to
intermediate steps. Common steps are grouped together at
shared nodes, facilitating the parallel exploration of different
solution paths.

When a solution fails at a certain point, the model identifies
the steps shared with other candidate solutions. By skipping
the re-execution of these common steps—a process referred
to as the shared step method—the model saves time and
resources. In contrast, the reset step method involves restarting
from the beginning of each new solution. Leveraging shared
progress enables the model to avoid redundant computations,
thereby improving overall efficiency.

Consider the general structure of two solutions, so; and sop,
as follows:

SOp {Sl, 52, S3}, SOy {Sl, 52, Sé}

Here, steps s1 and s, are common to both solutions, while
the remaining steps are different. If a failure occurs at step
s3 in solution so;, the model can revert to the shared steps
{51, 52} and continue with the divergent steps {s}} from soa,
as shown in Algorithm 2.

1) Time and Resource Efficiency: By avoiding redundant
computations, specifically those associated with shared steps,
the model can save both time and computational resources.
The time saved can be quantified as follows:

Timegayeqd = Timesol - TimeCommon(sol,soz)

where Timeg,, represents the total time to execute solution
so1, and Timecommon(so;,s0,) 18 the time spent on the common
steps. By focusing on the divergent steps, the model minimizes
unnecessary computations, thus improving overall efficiency.

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 2 Solution Reversion and Divergence

1: Input: Two candidate solutions so; and sop, with steps
s1, 82, 83 and s’l,sé, sé, respectively.

2: Output: Updated solution with minimal re-execution of
steps.

3: if Failure occurs in solution so; then

Revert to the common steps between so; and so,, i.e.,

Common(soy, s02)

5: Proceed with the remaining divergent steps from so-
lution so,, i.e., Divergent(so,)

6: end if

7: Return the updated solution after reversion and diver-
gence.

D. Active Query Information through On-device Interface

The integration of the IoT device with the Language Model
(LLM) requires an effective and responsive communication
channel that allows the LLM to query and interact with the
device’s environment. This interaction is essential for refining
the generated code and diagnosing any issues during execu-
tion. The IoT device provides this communication capability
through an On-device interface, which acts as a bridge between
the LLM and the device itself.

1) Interface to IoT Device — On-device Interface: The
On-device interface is a crucial component that facilitates
communication between the LLM and the IoT device. It must
be capable of accepting queries from the LLM, executing
the corresponding instructions, and returning relevant results.
Depending on the device’s capabilities, the On-device interface
can take various forms:

1) Runnable Interface: In cases where the LLM generates
commands that are directly executable on the IoT device,
such as shell scripts or system commands, the On-device
interface must be able to run these commands. For
example, in an Ubuntu-based system, the interface could
execute bash scripts generated by the LLM, providing
immediate feedback to the model about the outcome of
the commands.

2) Generated Interface: In some situations, the LLM may
need to generate code that the IoT device is not imme-
diately capable of executing. For instance, if the device
does not have a built-in command execution environ-
ment, the On-device interface can provide a mechanism
for the LLM to generate executable code. The device
can then run this code to collect data or perform specific
operations. If the device lacks this capability, the LLM
can assist in developing the necessary functionality, or
the system may implement additional software layers to
enable this communication.

The On-device interface not only serves as the communi-
cation channel for running commands but also plays a key
role in querying device-specific information. Once the device-
specific data is collected, it is sent back to the LLM for further
refinement of the prompt, ensuring that the generated code is
accurate and effective.

2) Providing Complete On-device Environment Information
for Issue Identification: For effective problem diagnosis and
resolution, it is essential that the On-device interface is capable
of gathering detailed environmental information from the IoT
device. This includes real-time system data such as device
status, hardware resources, software configurations, error logs,
and network conditions.

A potential solution involves forming shell scripts or spe-
cialized system queries that collect and provide the required
data to the LLM. These scripts can be automatically generated
based on the prompts and executed by the On-device interface.
The collected data can then be returned to the LLM for
analysis, enabling it to identify issues, refine the code, and
suggest corrective actions.

For instance, if the LLM detects that a particular func-
tionality is failing to execute as expected, it can query the
device for specific environmental conditions that might be
influencing the performance. These could include memory
usage, CPU load, or available storage space. By acquiring this
comprehensive set of environmental data, the LLM can make
informed adjustments to the code, ensuring that it aligns with
the actual device environment.

This process also supports a dynamic feedback loop, where
the LLM continually receives and processes environment-
specific data to optimize the code generation process. This
capability significantly enhances the model’s ability to diag-
nose issues accurately and adapt the code to meet the device’s
specific requirements.

The On-device interface, by providing continuous and de-
tailed environmental feedback, allows for more precise iden-
tification of problems and ensures that the generated code is
well-suited to the IoT device’s real-world conditions.

IV. IMPACT OF UNRELATED PROMPT WORDS AND WORD
ORDER ON TRANSFORMER OUTPUTS

In this section, we aim to demonstrate that both the presence
of unrelated prompt words and the order of prompt words
can significantly affect the output of Transformer models.
This underlying behavior supports the need for active prompt
adjustment to optimize performance.

A. Dependence on Prompt Words

Transformers process input sequences using embeddings,
self-attention mechanisms, and feedforward layers. The
model’s output is a function of the input tokens, represented
as embeddings in a high-dimensional space.

1) Prompt Words Representation: Each input word w; in
a sequence {wp,ws,...,w,} is mapped to an embedding
e; € RY, where d is the embedding dimension. This embedding
includes positional information as shown in the following
equation:

e; = WordEmbedding(w;) + PositionalEncoding (i)

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2) Self-Attention Mechanism: The Transformer model uses
a self-attention mechanism to compute the relevance of each
word to every other word in the sequence. The attention score
between words w; and w; is calculated as:

Attention(w;, w;) = softmax (&)
o Vi

where:

e q;,k; are query and key vectors derived from the embed-
dings e; and e;,

o dy is the dimensionality of the key vector.

The attention mechanism ensures that the model’s output
depends on the relationships between all input words, as
encoded in the attention weights.

3) Output Computation: The output for each word w; is
computed as a weighted sum of the value vectors v;, scaled
by the attention scores:

n
zi=) Attention(wy, w;)V;
j=1

Thus, the output is intrinsically dependent on the input
sequence, including both the individual tokens and their order.

B. Impact of Related Words on Correct Results

Transformers are sensitive to semantic relationships between
words due to their reliance on self-attention. Related words
contribute to meaningful attention patterns, while unrelated
words can disrupt these patterns.

1) Definition of Related Words: Let w; and w; be two
words in the input sequence. We define a relatedness function
R(w;i,w;) as the semantic similarity between w; and wj,
which is measured as:

R(w;,w;) = cosine(Embedding(w;), Embedding(w ;))

R(w;,wj) is high if w; and w; are semantically related,
meaning they are closer in the embedding space.
2) Effect of Related Words:

« Attention Distribution: = For related
Attention(w;,w;) is high, leading to
contribution of v; to the output z;.

« Coherence: Related words create coherent attention pat-
terns, allowing the model to better understand context and
generate more accurate results.

3) Effect of Unrelated Words:

« Noise in Attention: For unrelated words,
Attention(w;, w;) is low or misaligned, which introduces
noise in the output z;.

« Degradation: A high proportion of unrelated words di-
lutes the meaningful relationships between related tokens,
leading to a degradation in the model’s performance.

words,
a greater

4) Impact of Word Order: In addition to the semantic
relationships between words, the order of the words in the
input sequence also affects the output. Since Transformers
use positional encoding to capture the order of words, the
rearrangement of words can change the attention distribution
and, consequently, the output.

o Order Sensitivity: If the order of related words is
changed, the attention mechanism may shift, leading to
incorrect associations and reducing the coherence of the
generated output.

« Disruption of Context: Changing the order of words,
even if they are semantically related, may confuse the
model, causing it to misinterpret the context or generate
less accurate results.

Thus, the order of the words plays a crucial role in deter-

mining the effectiveness of the attention mechanism.

5) Quantitative Impact of Relatedness and Order: Consider
an input sequence S with n tokens, where r are related tokens
and u are unrelated tokens (r + u = n). The model’s ability to
generate correct outputs depends on both the relatedness ratio
+ and the order of the words. The effective accuracy can be
expressed as:

Accuracy(S) o L. f (order)
n

where f(order) represents the impact of the word order
on the model’s performance. As the proportion of unrelated
words increases or the word order becomes more disordered,
the accuracy decreases due to increased noise and disrupted
attention patterns.

Experimental studies have validated this relationship, show-
ing that sequences with a higher proportion of unrelated words
or poorly ordered words tend to degrade model performance.

C. Conclusion

The output of Transformers relies heavily on the seman-
tic relationships between words and their order within a
sequence. Related words enhance performance by forming
meaningful connections, whereas unrelated words or changes
in word order disrupt attention patterns, leading to diminished
results. This evidence underscores the importance of input
word relatedness and word order in transformer-based models,
emphasizing the need for active prompt adjustments, such as
reordering words or altering the prompt scope to optimize re-
sults. Additionally, active validation provides feedback on code
correctness, further refining the prompt adjustment process.

V. VERIFICATION

In this section, we verify the impact of prompt scope
changes on the performance of large language models (LLMs)
and assess the efficiency of using shared steps across candidate
solutions.

A. Impact of Scope Changes on LLM Results

To verify the impact of scope changes in prompts, we use
the example of a touch screen keyboard where the onboard

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

File

Input Dialog x

Enter something:

X Cancel || $POK

Fig. 2. Touch screen keyboard is not shown

keyboard is not displayed to the user, and the code is generated
by the large language model (LLM). The application was
developed using Python and Qt in landscape mode, featuring
an input box. The corresponding code is shown in Algorithm
3.

The experiments were conducted in an Ubuntu 22.04 en-
vironment on a YANMENG industry computer (YM10M-
YD) with the following specifications: Intel Celeron N5100
@ 1.1GHz (quad-core CPU), 8 GiB of RAM, and a Goodix
Capacitive touchscreen.

Algorithm 3 Virtual Keyboard Integration in a PyQt Applica-
tion
1: function SHOW_INPUT_DIALOG

2: call SHOW_VIRTUAL_KEYBOARD() > Display the
virtual keyboard
3: (text,0k) «— QInputDialog.getText (self,

> Show input dialog for keyword

4: call HIDE_VIRTUAL_KEYBOARD() » Hide the virtual
keyboard

5: end function

6: function SHOW_VIRTUAL_KEYBOARD

call subprocess.Popen(["onboard"])

system virtual keyboard

8: end function

9: function HIDE_VIRTUAL_KEYBOARD

10: call subprocess.run(["pkill",
stdout=DEVNULL, stderr=DEVNULL)
virtual keyboard process

11: end function

> Launch the

"onboard"],
> Terminate the

Issues: When the program runs and the user clicks the input
dialog, the onboard keyboard (invoked by the code) does not
appear, as shown in Figure 2.

We use chatGPT as the LLM to resolve the issue. Three
ways during the scope and order of prompt adjustment are
chosen as for the analysis, we call it three methods: Method]1,
Method2 and Method3 with prompt "Qt python project on-
board cannot show in landscape Ubuntu 22.04", "onboard
can not show in landscape Qt python project Ubuntu 22.04",
and "onboard can not show in landscape Ubuntu 22.04"

respectively.

The results of the study are presented in Figure 3, which
compares three methods across four key metrics: the number
of given suggestions, the number of changes made to the
Python code, the onboard settings, and the number of sugges-
tions that resolved issues. Each subplot in the figure illustrates
the trends for one metric across all three methods.

The diagram labeled "Number of Suggestions that Resolved
Issues" represents the number of solutions that successfully ad-
dress the issues in our project. Only Method 3 provides candi-
date suggestions that effectively resolve the issues. In contrast,
Method 1 and Method 2, despite having more information in
the prompt for the LLM, do not contain the correct solutions.
This suggests that providing more information may, in some
cases, negatively impact the accuracy of the suggestions.

The diagram titled "Onboard Settings" pertains to the on-
board settings, with a recommendation to configure other
related aspects. If the developer considers additional configu-
rations of onboard settings, they may identify the correct so-
lution. This indicates that exploring LLM generated solutions
in a comprehensive manner can yield correct outcomes.

The diagram labeled "Number of Changes Made to the
Python Code" illustrates modifications to the Python code.
Since the keyboard is not visible in the development environ-
ment, errors may arise in the Python code due to its interaction
with the interface. This also can introduce an interference
factor, as the issue might not be directly related to the Python
code itself. It is evident that, at times, the suggestions made
result in significant changes to the Python code. This suggests
that the prompt itself influences the generated suggestions.
Thus, with the prompt scope adjustment algorithm, when
iterating, the prompt becomes more suggestive of potential
solutions.

-) Additionally, we observe that the order in which prompts

are provided impacts the suggested solutions. Method 1, which
begins with "Qt Python Project," consistently suggests changes
to the Python code. On the other hand, Method 2, which starts
with "Onboard," leads to a different set of suggestions. Method
3, which omits "Qt Python Project," does not suggest changes
to the Python code, highlighting the impact of prompt order
on solution generation.

The diagram titled "Number of Given Suggestions’ repre-
sents the total number of solutions provided by the LLM.
Statistical analysis using a one-way ANOVA test indicates that
the prompt has minimal impact on the number of suggestions
generated. The test results show an F-statistic of 2.1847 and
a p-value of 0.1206, which exceeds the common significance
level of 0.05. Consequently, we fail to reject the null hypothe-
sis, indicating that the variation in the number of suggestions
across the three methods is not statistically significant.

In conclusion, both the scope and order of the prompt have
a significant impact on the solutions provided. Adjusting the
scope and order can enhance the accuracy of the suggestions.

B. Efficiency of using knowledge tree

The verification process evaluates two methods—Shared
Steps and Reset Steps—by comparing their cumulative and

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Number of Given Suggestions

Number of Changes Made to the Python Code

104 et * @ Method 1 49
; k Method 2

—&- Method 3

9 ‘ ’\ . "-.: .-!1 - 3
Y ;
E 8 ,i/ \ F - i s n o §2
S8 "7 . X A A) ‘\ E ral 8
2/ AL/ \ YK MY f N\
4 VRV AAVAYAVAY; \
7 re ¥ e i X ¥ 1
,” B
61 4 e é 0

--@- Method 1

—&- Method 3

Method 2

e — kA ke ke — ke — Ak — e A — Ak —A— kA

T T
0 2 4 6 8 10 12 14 16 18
Query Rounds

Onboard Settings

T T
0 2 4 6 8 10 12 14 16 18
Query Rounds

Number of Suggestions that Resolved Issues

1 - Method1| 17 4 1 * . +
Method 2 i '."1 ii il ?‘ i ?‘ i
—&- Method 3 i "1 il '_H i i jr‘ i
3 e — N . ; i
rN -"A'\ /" \‘\ /'A\ ’ ! /'A‘\ fr N Pl l\ I l\ il J{ l\ i l\ l’
. / \‘\[/ \ W \\‘// NN N s ;j 'L it !_l 1‘ i : l\ || e Method1
a1 Tt A £ I Y O AR RO AR T A Rt
I VI H i Vg . 1 : .
i A SRR Y
ARy | TR Y AR A U A | R R A IRV
! \l I Vi o i i '
! ij Vo \ ! i \: N \/
5] 4] ! ; !
04 —® L TR SR SN SERERR R TR SO SR TSt Y WY S) ol —# b & — K - i
0 2 3 6 8 0 12 1 16 18 0 2 3 6 8 0 12 12 15 18

Query Rounds

Query Rounds

Fig. 3. Comparison of Key Measurements Across Methods with Scope and Order Variations in Prompts

average time efficiency. In the simulation, the path lengths
were selected randomly from the set {2,4,8, 16}, chosen to
simulate various complexities of real-world tasks, ranging
from simpler to more complex scenarios. The correctness of
a method was determined probabilistically with a success rate
p = 0.6, representing a moderate likelihood of success. This
value was selected to model realistic conditions where methods
may fail but still have a reasonable chance of success.

The transition probabilities for shared steps between meth-
ods were defined as {1:1/2, 2:1/4, 3:1/8, 4:1/16}, reflecting a
natural decrease in the likelihood of shared steps as the number
of steps increases. Each pair is formatted as ’length of shared
steps: probability.” For example, ’3: 1/8 indicates a probability
of 1/8 that two candidate solutions share 3 steps.

For the time calculation, the total time for each method was
computed as follows:

- Shared Steps Method: The total time was calculated by
summing the time for common steps (reused from the previous
method) and the time for remaining steps (requiring execution
from the new method):

Tihared = (common steps X fgep) + (remaining steps X fgep)

- Reset Steps Method: The total time for the reset method
was calculated by summing the time for all steps, starting from
the first step after each switch as no common steps are used
in the verification:

Treser = total steps X fep

Where fgep is the time to complete one step.

The verification was performed for 25 independent test
rounds. In each round, the methods were tested under identical
conditions, ensuring fairness in comparison. The results were
analyzed by plotting the accumulated time over test rounds

and comparing the average times for both methods. The total
time difference between the methods was computed as:

AT = Z Treset — Z Tshared

The results are shown in Figure 4. From the figure, it is evi-
dent that the accumulated time for the Shared Steps method is
consistently less than that of the Reset Steps method. The total
time for the Reset Steps method was 204 seconds, whereas
the Shared Steps method required 164 seconds, resulting in
a time saving of 40 seconds. This represents a near 25%
improvement over the Reset Steps method. The reduction
in accumulated time demonstrates the advantage of reusing
shared steps between methods, which allows the Shared Steps
method to optimize transitions more effectively.

In addition to time savings, the Shared Steps method also
requires fewer revert steps. When a path fails, reverting to
shared steps ensures a smoother and more efficient switch to
other methods. In contrast, the Reset Steps method requires
restarting from the beginning for each new path, leading to
unnecessary repetition and increased effort. By minimizing
revert steps, the Shared Steps method not only saves time
but also aligns better with scenarios where efficient recovery
is critical, such as real-time systems or resource-constrained
environments.

These findings highlight the practical benefits of the Shared
Steps approach in reducing computational overhead and im-
proving operational efficiency. The results provide an indica-
tion that leveraging shared progress can be a valuable strategy
for optimizing performance in systems with probabilistic out-
comes and frequent switching requirements.

VI. CONCLUSION

In this paper, we presented the LLM-based code devel-
opment model that actively adjusts prompts to optimize IoT

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

umulated Time Comparison for Different Methods (With Common Steps vs Reset to First Step)

Accumulated Time Difference for Each Test Round

-@- Accumulated with Shared Steps . 40 4
2007 _g. Accumulated with Reset to First Step ,(
.
-0
1754 ‘.-.‘ 35
-
- . —
= rd v %
@ 1501 e - s
] o o S 30 4
S 4 - &
3 4 e @
2 1251 - s 2
2 4 el 525
3 ; / &
o =
£ 100 s > a
£ =g g
o Y £ 204
@ / =
2 o« o
S 75 - 4 £
E - Py s
El { ree El
3 , . E 15
. S :
/‘II. g
/
P 10
25 o < ./
o
B
04 5 |

—8— Accumulated Time Difference (Shared - Reset)

T T T T T T T
o] 5 10 15 20 25 0
Test rounds,

Fig. 4. Accumulated time for shared path method and individual path method

device code generation and validation. By incorporating on-
device parameter retrieval and immediate validation feedback,
our model iteratively refines the input prompts given to large
language models (LLMs), leading to more accurate and ef-
ficient code generation. Additionally, we introduced a novel
method of organizing candidate solutions into a tree structure,
enabling the efficient reuse of common steps and reducing
redundant computations. The verification results demonstrate
that adjusting prompts based on device parameters and valida-
tion significantly improves accuracy, while the tree structure
approach enhances the efficiency of candidate solution testing,
yielding a 25% improvement in testing efficiency in the sim-
ulation. The proposed model presents a promising solution to
the challenges of developing reliable and efficient IoT device
code, emphasizing the potential for integrating immediate
validation and dynamic prompt refinement into future LLM-
based development frameworks.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China under Grant No.
61772352; the Science and Technology Project of Sichuan
Province under Grant No. 2019YFG0400, 2018GZDZX0031,
2018GZDZX0004, 2017GZDZX0003, 2018JY0182,
19ZDYF1286, 2020YFGO0322, and the R&D Project of
Chengdu City under Grant No. (2019-YF05-01790-GX).

REFERENCES

[1] N. S. Mathews and M. Nagappan, “Test-driven develop-
ment and llm-based code generation,” in Proceedings of
the 39th IEEE/ACM International Conference on Auto-
mated Software Engineering, 2024, pp. 1583—-1594.

[2] J. Sauvola, S. Tarkoma, M. Klemettinen, J. Riekki, and

D. Doermann, “Future of software development with

generative ai,” Automated Software Engineering, vol. 31,

no. 1, p. 26, 2024.

H. Cui, Y. Du, Q. Yang, Y. Shao, and S. C. Liew,

“Llmind: Orchestrating ai and iot with llm for complex

task execution,” IEEE Communications Magazine, 2024.

(3]

T T T T u
5 10 15 20 25
Test rounds

[4] N. Tang, “Towards effective validation and integration of
llm-generated code,” in 2024 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC).
IEEE, 2024, pp. 369-370.

Y. Zhang, H. Fei, D. Li, and P. Li, “Promptgen: Auto-
matically generate prompts using generative models,” in
Findings of the Association for Computational Linguis-
tics: NAACL 2022, 2022, pp. 30-37.

E. Jahani, B. S. Manning, J. Zhang, H.-Y. TuYe, M. Al-
sobay, C. Nicolaides, S. Suri, and D. Holtz, “As genera-
tive models improve, people adapt their prompts,” arXiv
preprint arXiv:2407.14333, 2024.

L. Wang, X. Chen, X. Deng, H. Wen, M. You, W. Liu,
Q. Li, and J. Li, “Prompt engineering in consistency and
reliability with the evidence-based guideline for 1lms,”
npj Digital Medicine, vol. 7, no. 1, p. 41, 2024.

Z. Englhardt, R. Li, D. Nissanka, Z. Zhang, G. Narayan-
swamy, J. Breda, X. Liu, S. Patel, and V. Iyer, “Exploring
and characterizing large language models for embedded
system development and debugging,” in Extended Ab-
stracts of the CHI Conference on Human Factors in
Computing Systems, 2024, pp. 1-9.

Z. Tafferner, B. Illés, O. Krammer, and A. Géczy, “Can
chatgpt help in electronics research and development? a
case study with applied sensors,” Sensors, vol. 23, no. 10,
p. 4879, 2023.

S. Raaj Hiraou, “Optimising hard prompts with few-shot
meta-prompting,” arXiv e-prints, pp. arXiv—2407, 2024.
T. S. Kim, Y. Lee, J. Shin, Y.-H. Kim, and J. Kim,
“Evallm: Interactive evaluation of large language model
prompts on user-defined criteria,” in Proceedings of the
CHI Conference on Human Factors in Computing Sys-
tems, 2024, pp. 1-21.

M. Chen, Z. Liu, H. Tao, Y. Hong, D. Lo, X. Xia, and
J. Sun, “B4: Towards optimal assessment of plausible
code solutions with plausible tests,” in Proceedings of the
39th IEEE/ACM International Conference on Automated
Software Engineering, 2024, pp. 1693—-1705.

(5]

(6]

(7]

(8]

[9]

[12]

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[13]

[14]

[15]

[16]

S. Gao, C. Gao, W. Gu, and M. Lyu, “Search-based
llms for code optimization,” in 2025 IEEE/ACM 47th In-
ternational Conference on Software Engineering (ICSE).
IEEE Computer Society, 2024, pp. 254-266.

C. Li, J. Sifakis, Q. Wang, R. Yan, and J. Zhang,
“Simulation-based validation for autonomous driving
systems,” in Proceedings of the 32nd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis,
2023, pp. 842-853.

B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou,
and W. Chen, “Codet: Code generation with generated
tests,” arXiv preprint arXiv:2207.10397, 2022.

A. Jayasena and P. Mishra, “Directed test generation
for hardware validation: A survey,” ACM Computing
Surveys, vol. 56, no. 5, pp. 1-36, 2024.

Hong Su Hong Su Hong Su received the MS and
PhD degrees, in 2006 and 2022, respectively, from
Sichuan University, Chengdu, China. He is currently
a researcher of Chengdu University of Information
PLACE Technology Chengdu, China. His research interests

PHOTO include blockchain, cross-chain and smart contract.
HERE

