2254

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

LILM-Based Test-Driven Interactive Code
Generation: User Study and Empirical Evaluation

Sarah Fakhoury ©, Aaditya Naik ¥, Georgios Sakkas

Abstract—Large language models (LLMs) have shown great
potential in automating significant aspects of coding by producing
natural code from informal natural language (NL) intent. How-
ever, given NL is informal, it does not lend easily to checking
that the generated code correctly satisfies the user intent. In
this paper, we propose a novel interactive workflow TICODER
for guided intent clarification (i.e., partial formalization) through
tests to support the generation of more accurate code suggestions.
Through a mixed methods user study with 15 programmers,
we present an empirical evaluation of the effectiveness of the
workflow to improve code generation accuracy. We find that
participants using the proposed workflow are significantly more
likely to correctly evaluate AI generated code, and report
significantly less task-induced cognitive load. Furthermore, we
test the potential of the workflow at scale with four different
state-of-the-art LL.Ms on two python datasets, using an idealized
proxy for a user feedback. We observe an average absolute
improvement of 45.97% in the pass@1 code generation accuracy
for both datasets and across all LLMs within 5 user interac-
tions, in addition to the automatic generation of accompanying
unit tests.

Index Terms—Intent disambiguation, code generation, LLMs,
human factors, cognitive load, test generation.

1. INTRODUCTION

ARGE Language Models (LLMs) have shown tremendous

potential in generating natural-looking programs from in-
formal intent expressed in natural language. There has been
a surge in research around training LLMs over programming
language artifacts in just the last couple of years [1], [2], [3],
[4], [5]. Commercial offerings such as GitHub Copilot [6] are
widely available, and have been shown to generate a non-trivial
fraction of code in real-world scenarios [7].

However, there are several challenges that arise when
generating code from natural language specifications [8],
[9]. For example, natural language prompts crafted by
users may not always fully capture a their intent, as they
may contain ambiguous language and lack of nuance. More

Manuscript received 20 December 2023; revised 30 May 2024; accepted
28 June 2024. Date of publication 22 July 2024; date of current version
19 September 2024. Recommended for acceptance by J. Wang. (Correspond-
ing author: Sarah Fakhoury.)

Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K. Lahiri are with the
Microsoft Research, Redmond, WA 98052 USA (e-mail: sfakhoury@
microsoft.com; saikatc @microsoft.com; shuvendu@microsoft.com).

Aaditya Naik is with the University of Pennsylvania, Philadelphia, PA
19104 USA (e-mail: asnaik@seas.upenn.edu).

Georgios Sakkas is with the University of California, San Diego, CA 92037
USA (e-mail: gsakkas@eng.ucsd.edu).

Digital Object Identifier 10.1109/TSE.2024.3428972

, Saikat Chakraborty ¥, and Shuvendu K. Lahiri

importantly, it is not possible to automatically evaluate whether
code generated from a natural language prompt is correct.
Natural language is inherently ambiguous and enforcing the
user intent through some mechanical process (such as testing,
static analysis or formal verification) is not immediately
possible.

Consider the following docstring, taken from MBPP [10], a
popular Python programming tasks benchmark:

| def text lowercase_underscore (text) :

2 "mnnwrite a function that returns true if the
input string contains sequences of lowercase
letters joined with an underscore and false
otherwise""

While the intent may seem obvious at first, it is not immedi-
ately clear how to check the correctness of a potential solution.
Querying an LLM such as text-davinci-003 [11] yields
several plausibly correct code implementations that pass simple
tests such as rejecting the empty string “ ”, or accepting the
string "aa_bb". However, it may also produce subtly buggy
code solutions that accept strings such as "aa_bb_cc", which
is inconsistent with the original user intent that expects the
string to consist entirely of two sequences of lowercase letters
joined by an underscore (as defined by the accompanying hid-
den reference solution and the validation tests from MBPP). In
practice, this can often lead to users accepting code with subtle
bugs while using LLMs [12], [13]. The apparent ambiguity in
this particular docstring, and more importantly the informal na-
ture of natural language, highlights the inability to immediately
ascertain the correctness of the code generated by an LLM.
Instead, it would be desirable to avoid surfacing such subtly
incorrect codes by first clarifying, and partially formalizing, the
user intent into a checkable specification.

This issue can be compounded when users are presented
with a list of candidate suggestions from LLMs, such as in the
Copilot VSCode IDE suggestions pane, which can display up
to 10 suggestions. Users often have to linearly scan the list of
code suggestions, review them, and reject the incorrect ones
until arriving at one that satisfies their intent. In such situations,
subtle bugs may be overlooked, with significant downstream
impacts. In fact, several recent works exploring developer-Al
interaction have highlighted the need for mechanisms to facil-
itate verification of Al-generated code [9], [14], such as those
that allow users to use tests that disambiguate between the
different code suggestions [15].

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8486-7749
https://orcid.org/0000-0002-3100-0455
https://orcid.org/0000-0002-1071-8038
https://orcid.org/0000-0002-6889-7171
https://orcid.org/0000-0002-4446-4777
mailto:sfakhoury@microsoft.com
mailto:sfakhoury@microsoft.com
mailto:saikatc@microsoft.com
mailto:shuvendu@microsoft.com
mailto:asnaik@seas.upenn.edu
mailto:gsakkas@eng.ucsd.edu

FAKHOURY et al.: LLM-BASED TEST-DRIVEN INTERACTIVE CODE GENERATION: USER STUDY AND EMPIRICAL EVALUATION

However, prior research has shown that it can be difficult for
users to manually provide a sufficient number of test cases to
disambiguate suggestions upfront [16].

Inspired by findings around example generation and dis-
ambiguation techniques in Programming By Examples (PBE)
[17], and recent emerging ability of LLMs to generate tests
[18], [19], [20] in this paper, we propose leveraging user-
Jfeedback through LL.M-generated tests to improve the trust
and correctness of LLM-generated code. Specifically, we
propose the workflow of zest-driven interactive code generation
(TICODER) to (a) clarify (i.e., partially formalize) user intent
through generated tests, and (b) generate a ranked list of code
that is consistent with such tests.

Let us demonstrate a simple instantiation of this framework
using the earlier example, where a user prompts an hypothetical
LLM to generate code satisfying their natural language intent.
Instead of directly displaying a list of plausible code sugges-
tions, our framework TICODER would query the user with a
question:

text lowercase underscore("aa bb cc") == True?

Let us assume that the user answers ‘no’, since they expect
only two sequences of lowercase letters, joined by one under-
score, as mentioned earlier. The workflow would likely query
the user again with the following question:

text lowercase underscore("aa bb") == True?

If the user says ‘yes’, then the system would output the list
of approved tests, as well as a set of semantically ranked code
suggestions that are consistent with those tests. Once the user
chooses a suggestion from such a list, it would generate code
along with accompanying tests.

def text lowercase_ underscore (text) :
return True if bool(re.search(r'A[a—z]_[a—z]+$
', text)) else False

def test text lowercase_ underscore () :
assert text lowercase underscore("aa bb")==
True

test_text lowercase_ underscore ()

In the case of LLM-based code generation, the generated
tests not only help make natural language intent more precise
and prune incorrect suggestions generated by the LLM, but can
also serves as debugging aid for remaining suggestions and
regression tests for future code edits [7].

While the proposed framework appears intuitive, it may not
scale to more complex code generation tasks. For example, in
cases where the user is unable to validate tests, e.g. for tests that
require intricate testing frameworks, the a workflow may not be
tenable. Furthermore, the utility of the interactive framework
is contingent upon (a) the ability of LLMs to generate useful
tests, and (b) the cost-benefit trade-off of the overhead of user
interaction versus the benefit on pruning and ranking of code
suggestions.

To this end, we seek to understand: How does the pro-
posed workflow impact the performance of developers
evaluating AI generated code? In addition, the proposed

2255

framework should scale, augmenting the code generation ac-
curacy of several open and closed-source LLMs. Thus we also
seek to answer: Does proposed workflow augment the ac-
curacy of code generation models?

To answer these questions, we explore the effectiveness of
our proposed framework through a (1) mixed-effects user study
and (2) a large scale evaluation of the approach on two Python
benchmarks for code generation. This paper makes the fol-
lowing contributions:

1) We propose an interactive workflow, TICODER, for guiding
user intent clarification through automatically-generated
tests and improving code generation accuracy of LLMs.
TICODER leverages off-the-shelf LLMs for generating
code and tests, and provides a mechanism to check
Al-generated code through user-approved tests.

2) We evaluate the effectiveness of TICODER by conduct-
ing a mixed-methods user study comparing two different
variants of TICODER for generating and evaluating code
suggestions, including a baseline condition representing
existing developer-Al interaction workflows. We observe
a significant reduction in cognitive effort reported by par-
ticipants using either variant of TICODER over existing
interaction mechanisms.

3) We further evaluate the performance of the TICODER
workflow at scale by simulating user feedback, using the
reference code solution as an idealized proxy. TICODER is
evaluated on on two Python datasets, MBPP and
HumanEval, and a mixture of four open and closed
sourced LLMs. We demonstrate that TICODER contributes
to improving the code generation accuracy of all LLMs
considered. We observe an average absolute improvement
of 45.73% in pass@l code generation accuracy within
5 user interactions across both benchmarks. In fact, we
observe TICODER can boost smaller model pass@l
accuracy to levels comparable to much larger models,
such as GPT-4 -32k, within just one user interaction.

II. RELATED WORK

1) Improving Code Generation Accuracy: Techniques for
improving code generation accuracy is a rapidly growing field
of work. Unlike the work proposed in this paper, these tech-
niques do not consider user feedback, or guide users in clarify-
ing their intent formally; we cover them briefly.

AlphaCode [21] and CodeT [22] both propose techniques
to improve code generation accuracy by generating tests using
LLMs, and then grouping code suggestions by the set of tests
that they satisfy. CodeT [22] refines the approach by scoring
tests and code suggestions simultaneously by prioritizing tests
that satisfy many code suggestions and prioritizing codes that
satisfy many tests. While there are similarities with CodeT in
using LLM generated tests to rerank generated code that results
in code generation accuracy on benchmarks, TICODER is com-
plementary as one can apply TICODER after CodeT. But more
importantly, we argue that a user cannot trust the generated
code from CodeT any more than using LLM directly. This is
because the user is still presented with a set of code suggestions.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

2256

In contrast, with TICODER, we first formalize the user intent
through tests allowing the user to constrain the code that the
user will need to eventually sample from. TICODER also allows
users to modify test output in one setting, which is not possible
in the CodeT approach, where the tests are fixed throughout.
As part of future work, we plan to explore if our approach may
benefit from code and test ranking algorithms in CodeT.

Similarly, work on program synthesis [23], [24] generates
code that satisfies a formal specification either expressed as a
logical specification or input-output tests [25]. Our work differs
in that we use LLMs to generate code from informal specifica-
tions, i.e. natural language intent. However, it would be interest-
ing for future work to leverage user-provided tests to improve
the quality of code generation, as explored in recent works
[26], [27]. In this work, to evaluate our proposed approach
at scale, we simulate user feedback using the code reference
implementation as an idealized proxy, similar to prior works
in oracle-guided inductive synthesis [15], [28] and interactive
program synthesis [29], [30] where an an oracle (reference
implementation or users) is queried to identify the output for
a given input. However, prior works in this area appeal to an
automatic symbolic engine (such as a constraint solver [30] or
automata construction [17]) to generate distinguishing example
inputs for a pair of programs, which is inconceivable for general
purpose imperative programming languages such as Python.

2) Usability of Al Programming Assistants: There exists
several prior works exploring the usability of Al programming
assistants. In this section, we focus on recent work that identifies
challenges related to the expressing of intent and control over
the generation suggestions of Al assistants.

Liang et al. [8] identify that giving up on incorporating
generated code, and lack of ability to provide feedback, are
the most common usability issues encountered when using
completion-based Al programming assistants. This often occurs
because the code does not implement the desired functionality,
participants do not know why certain code was generated and
had trouble controlling the output to be aligned with their de-
sired intent. McNutt et al. [31] enumerate a design space of
interactions with code assistants, including how users should
be able to disambiguate candidate programs or refine their
initial specifications, echoing prior studies have indicated that
disambiguation can be valuable in the context of assistants like
GitHub Copilot [32] and traditional program synthesis tools
[33]. Similarly, Xu et al. [9] explored challenges of IDE-based
Al assistants, including how well specified the queries that
users formulate are. They find that participants frequently have
trouble expressing intent in their natural language queries to
the assistant, and issues of under specification often relate to
ambiguous instructions, such as omitting variable names.

Mozannar et al. [34] identify 12 core activities associated
with using GitHub Copilot and find that programmers often
iterate on their prompts until they obtain the suggestion they
desire, and spend a significant amount of time verifying code
suggestions. In fact, recent work by Bird et al. [14] shows
that as result of Al-powered tools, developer roles are shifting
so that more time is spent time reviewing code than actually
writing code. Several recent works [35], [36], [37] identify
clear opportunities for improving the accuracy of LLM code

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

generation techniques. Our work builds upon observations of
previous studies, and explores mechanisms to support code
evaluation tasks.

III. RESEARCH QUESTIONS AND PAPER ORGANIZATION

We briefly introduce the research questions and discuss pa-
per organization. In the following Section IV-A we introduce
our proposed approach: TiCoder. Then we answer two distinct
research questions:

RQ1 How does TiCoder impact the performance of python
developers evaluating AI generated code, in terms
of task correctness, time, and cognitive load? To
answer RQ1, we conduct a user study, where participants
use Al assistants augmented with the TiCoder workflow.
We evaluate the cost benefit tradeoff of the proposed ap-
proach on developer effort when evaluating Al generated
code.

Does the TiCoder workflow improve the accuracy
of generated code suggestions? To answer RQ2, we
explore the code generation accuracy of LLMs aug-
mented with the TiCoder workflow on two code genera-
tion benchmarks in python.

The methodology, evaluation, and results of each research
question are organized in the following sections: Sections V
and VI describe the methodology and results for RQ1, and
Section VII describes the methodology and results for RQ2.
We separate methods and results of RQs into distinct sections
for clarity. We conclude with a Discussion (Sec. VIII) of the
implications of our work to the broader research community,
and the Limitations of the presented experiments (Sec. IX).

RQ2

IV. PROPOSED APPROACH: TICODER

In this section, we outline a proposed workflow for leverag-
ing test generation and user feedback to clarify (i.e., partially
formalize) user intent. We refer to this approach as TICODER
(Test-Driven Interactive Code Generation), and define two
variants of the workflow and surface this interaction to users
in the following subsections.

A. High-Level Workflow

Fig. 1 describes the high-level workflow of Test-Driven
Interactive Code Generation (TICODER).

1) The user requests the Al programming assistant to gen-
erate a function, given optional code context including an
existing prefix in a file, a natural language description, and
the function header containing method name, parameters
and returns.

2) The Al programming assistant internally generates a set
of candidate code and test suggestions by prompting
an LLM.

3) The set of generated tests are executed for each candidate
code suggestion. The set of tests that pass or fail on each
code suggestion are stored.

4) Using execution information, the Al programming assis-
tant ranks (according to some heuristics) the set of gener-
ated tests and then surfaces the top ranked test to the user

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

FAKHOURY et al.: LLM-BASED TEST-DRIVEN INTERACTIVE CODE GENERATION: USER STUDY AND EMPIRICAL EVALUATION

User Interaction

Al Programming Assistant
1

AN, Pre-trained

‘v Large Language Model

1
Test I Code
Suggestions
Execution
l Information

Suggestions

! |

]
H H
! i

1
i Rank Prune Rank ;
: Tests Codes | Codes i
i |
1 1
1 1
1 1
i H

1

Code Query
(+code and test
context)

Test Validation
(Pass/Fail/Output)

Test manager

Assistant

Top Code
Suggestions

TiCoder

Fig. 1. TICODER workflow.
as a query; asking the user if a test is consistent with the
user’s intent.

5) The user responds either PASS, UNDEFINED, or FAIL sig-
nifying if the test is respectively: consistent, precondition-
violating!, or inconsistent with the user intent. Optionally,
in the case of FAIL, the user can provide the correct test
output OUTPUT.

6) The Al programming assistant leverages the user response
to prune, and rank the set of code and test suggestions.

7) Interaction steps 4-6 can be repeated for multiple itera-
tions, until a predefined termination criteria (e.g., fixed
number of steps, absence of tests) has been satisfied.

8) Once the interaction terminates, the Al programming as-
sistant outputs (a) a set of tests that the user has approved
or specified, and (b) a ranked list of code suggestions that
are consistent with the user responses.

We define two variants of the workflow: TICODER-
PASSFAIL and TICODER-OUTPUT. The first scenario represents
the case where the user provides only a Boolean PASS,FAIL
response. The second scenario, TICODER-OUTPUT, extends the
first scenario and represents the case where the user provides
the expected output OUTPUT in the case of a FAIL test.

We present both the scenarios as they enjoy complementary
benefits. The TICODER-PASSFAIL scenario is more lightweight,
in terms of user feedback, as well as, generalizes well for
richer tests beyond input-output examples. For example, tests
for stateful APIs comprises of a test-prefix as input and the
output oracle consists of a non-trivial predicate (e.g., checking
functional correctness of a stack object using the predicate
s.pop () == a on a stack object s and element a) [19].
On the other hand, TICODER-OUTPUT puts less burden on an
LLM to create the correct output for a given test input; rely-
ing instead on the user. However, it may require the user to
specify a possibly non-trivial test oracle when used beyond
input-output examples.

LA test violates a precondition if the function is undefined on the test input.
For example, the test assert SquareRoot (-4) == -2 undefined on
negative numbers.

2257

rite a function that returns true if the input string
contains only lowercase letters joined with an underscore,
and false otherwise."""

Code Prompt

Y
Test Prompt

pass Prompt Body b’p

def test_text_lowercase_underscore():
assert text_lowercase_underscore(

Test Body t 'P
-

Fig. 2.
example.

Example format, as well as code and test prompts for the running

B. TiCoder Implementation

In this section, we discuss one possible implementation of
the TICODER workflow. Specifically, we outline the approach
to generating code and test suggestions, ranking candidate tests
to surface to the user, pruning and ranking code suggestions
by user response. To simplify the presentation, we restrict our-
selves to the case of single function synthesis, where the user
input consists of a natural language comment s, the function
header h,, as well as any optional prefix prfr, needed to
generate the body of the function p. Fig. 2 shows an example for
our running example. In addition, we also assume the presence
of a set of hidden tests T}, (input-output pairs for simplicity)
to evaluate the correctness of the generated code, as well as a
hidden reference (oracle) implementation of p, namely b,,. Our
workflow does not have access to either T}, or b,.

1) Generating Code and Tests: We outline one possible
choice for implementing the prompt generation for generating
code and test suggestions for an example.

Fig. 2 presents a possible code prompt (in the gray boxes)
that can be used to query an LLM to produce a set of code
suggestions for our running example. Querying a LLM with the
code generation prompt will result in a set of code suggestions
similar to ones shown in Fig. 3. Code suggestion c3 is a valid
solution to the problem, while c; is an incorrect code sugges-
tion (since it allows the first substring to start with an upper-
case letter) and c» is also incorrect (since it allows more than
one sequence of lowercase letters joined with an underscore).
Similarly, the green boxes in Fig. 2 shows one possible fest
prompt that augments the code prompt with the statement pass
as the method body (corresponding to a placeholder imple-
mentation in Python) along with the assertion to be completed
within a test function. We use the generated test suggestions
(Fig. 3) to present the user with a set of tests. Some of these are
consistent with the user intent (¢3); while others are inconsistent
with the user intent (¢ and t5).

2) Ranking Test Suggestions: After obtaining the set of tests
produced by an LLM, the user is presented with a sequence of
tests. The user response to these proposed tests in both TICODER
scenarios (TICODER-PASSFAIL, TICODER-OUTPUT) are used to
prune and rank code suggestions. To minimize the number of
user interactions, it is desirable to prioritize tests that would
result in the most number of incorrect code suggestions being
pruned away [15], [29]. To achieve this, the set of tests are
executed against the set of possible code suggestions generated
by the LLM.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

2258

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

|def text_lowercase_underscore(
| return True if bool(re. search(r‘ [a=z1+_[a-z]+",

}def text_lowercase_underscore():
return True if bool(re.search(r’Ala-z]+_[a-z]+"',

}False

)) else

Code Suggestion 03]] r

:def text_lowercase_underscore(text):
return True if bool(re. search(r’/\[a z]+_[a-z]+$"',

xt)) else
:False
L] L] L]
‘[— Code Suggestion ¢ |
‘def text_lowercase_underscore()
[N S R S A S P 0 SRR P A S
Fig. 3.

2 Z 7 1
| Code Suggestion ¢; |

)) else False

a
o
72
,:
=
o

N

def test_text_lowercase_underscore():
assert text_lowercase_underscore(“Hello_world”)== True

Test Suggestion 7;

“Test guggestimi t_,
test_text_lowercase_underscore(): |
assert text_lowercase_underscore(“aa_bb_cc”) == True

Test Suggestlon t3|
def test_text_lowercase_underscore(): |
assert text_lowercase_underscore(#aa_bb”) == True |

" Test Suggestion 7,
def test_text_lowercase_underscore():

Code and test suggestions for the running example in Fig. 2 generated from a LLM. Code suggestion c3 and test suggestion t3 are both correct,

while code suggestions c1, c2 and test suggestions t1, to are incorrect (appear shaded), i.e. they don’t satisfy the problem prompts in Fig. 2.

Then, using this execution information, we adopt a
discriminative test ranking policy that prioritizes tests
that can discriminate best among the set of code suggestions
generated by the LLM. If a test ¢ can discriminate between
code suggestions well (i.e., splits the set of code suggestions
into roughly equal halves), then it would prune away a
substantial fraction of the code suggestions irrespective of the
user response (either PASS or FAIL).

More precisely, let U be the set of test suggestions and G
be the set of code suggestions that have not been pruned away
after £ > 0 user interactions. For each test ¢ € U, we split the
set of code suggestions G into the sets G} and G of code
suggestions that pass and fail the assertion in ¢, respectively.
Note that we ignore codes that results in a crash on a test ¢
instead of failing with an assertion failure. We treat these as
precondition violation. We then prioritize tests where the ratio
of the sizes of these two set is closest to 1. In other words, we
rank the tests in decreasing order using the following scoring
metric Sg;ser:

0 if max (|G|, |Gy |)is 0

min(|G/], |G [)/
max (|G, |G/)

Sdixcr(t) =
otherwise

Note that the test ranking strategy is uniform for both the
scenarios, although the test output will be possibly mutated by
the user response in TICODER-OUTPUT.

Consider the example in Fig. 3. Consider the two tests t;
and to: Two code suggestions {cs, c3} FAIL on test sugges-
tion ¢; while one suggestion {c;} PASS, making sgis.r(t1) =
min(1,2)/max(1,2) =1/2. Similarly, two code suggestions
{c1, co} PASS on test suggestion to while one suggestion {cs}
FATIL and sy (t2) = 1/2. All code suggestions in this example
PASS on test t3 making s (t3) = 0.

3) Pruning and Ranking Code Suggestions: TICODER re-
turns a ranked list of code suggestions, whose behavior is

consistent with all the user responses, and prunes the other code
suggestions generated by the LLM, whose execution behavior
on tests is contradictory to user expectation. Let us first con-
sider the case of code pruning. Let ¢ = (i,0) be a test in the
form of an input-output example presented to the user. If the
user responds PASS, then we prune any code ¢ € G for which
executing c(¢) # o. Similarly, if the user responds FAIL, then we
prune any code ¢ € G for which executing (i) = o. In addition,
for TICODER-OUTPUT if the user provides the desired output o
for the input 7, then we can further prune any code suggestion
¢ for which ¢(i) # o’. Note that we cannot soundly prune any
code if the user responds with UNDEFINED.

Finally, we define a simple code ranking strategy that uses
the tests in U to determine a ranking on code suggestions in G
as follows: Each generated code ¢ € G is executed with each
test t € U and gets assigned as a score the number of passing
tests d.. The codes are then ranked based on the decreasing
order of d..

Following from the example in the previous section, repre-
sented in Fig. 3, code suggestion c¢; passes on all tests {t1, to,
t3}, code suggestion cy passes on {to, t3} and code suggestion
c3 passes on {t3}. Our ranking would therefore rank c; highest
initially in the absence of any feedback from the user.

V. RQI1: USER STUDY METHODOLOGY

We aim to understand how the TICODER workflow may sup-
port software developers as they use Al-programming assistants
to generate and evaluate code suggestions. We are seeking to
answer the following research question:

RQ1 How does TiCoder impact the performance of python
developers evaluating Al generated code, in terms of
task correctness, time, and cognitive load?

To answer our research question we conduct a controlled
study with 15 participants consisting of 3 coding evaluation
tasks. To complete each task, participants are asked to interact

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

FAKHOURY et al.: LLM-BASED TEST-DRIVEN INTERACTIVE CODE GENERATION: USER STUDY AND EMPIRICAL EVALUATION

TABLE I
*WEEKLY DENOTES A FEW TIMES A WEEK, *MONTHLY DENOTES

A FEwW TIMES A MONTH

Python Python Al Programming .
D Experience Frequency Assistant Use Occupation
Pilot >5 years Daily Daily Industry
Pilot >5 years Monthly Monthly Industry
Pilot >5 years Daily Daily Industry
P1 >5 years Monthly Daily Industry
P2 >5 years Weekly Monthly Industry
P3 >5 years Rarely or never ~ Rarely or never Industry
P4 >5 years Daily Daily Industry
P5 3—5 years Weekly Weekly Academia
P6 >5 years Weekly Weekly Academia
P7 >5 years Weekly Monthly Industry
P8 >5 years Monthly Rarely or never Academia
P9 >5 years Daily Monthly Academia
P10 1—-2 years Weekly Daily Academia
P11 >5 years Daily Daily Academia
P12 3—5 years Weekly Rarely or never Academia
P13 >5 years Weekly Rarely or never Academia
P14 3—5 years Rarely or never Rarely or never Academia
P15 >5 years Daily Daily Industry

with one of the following Al assistants: Assistant 1 with no user
intent refinement, Assistant 2 representing TICODER-PASSFAIL
workflow, or Assistant 3 representing TICODER-OUTPUT work-
flow. Participants use each assistant to generate and evaluate a
set of code suggestions.

We recruit participants using a mix of distribution lists and
personal contacts. 3 of 18 participants were used as part of
the pilot study to inform our design, and the remaining 15 are
used in the final experiment. Table I contains participant demo-
graphic information. 8§ participants are either professional soft-
ware engineers or researchers at Microsoft, and the remaining
10 participants are PhD students from academia. The study was
IRB approved with voluntary participation and paid $15. All
interviews were conducted over a video-conferencing platform
and lasted approximately 45-minutes.

Participants were asked to complete each code evaluation
tasks with one of the three different Al code generation as-
sistants. Each task had a time limit of 15 minutes. We use
a within subject design, such that each participant uses all
three assistants, i.e. a different assistant for each task. Each
Al assistant represents one treatment under study, which we
describe in the next subsection.

A. Treatments

The experiment includes one control condition and two dis-
tinct treatment conditions, implemented as different Al pro-
gramming assistants. Each assistant differs in it’s interaction
mechanism with the developer and dictates the method in which
to surface the final set of code suggestions shown to each user.
To ensure that the same set of codes is shown to all participants
across treatments, we pre-select the prompt used to generate
code suggestions. Second, to ensure we measure the impact
of our dependent variables on only the process of evaluating

2259

Al generated code, we also restrict the ability to edit the Al
generated code suggestions. The interaction framework of each
Assistant is described below:

1) Control Condition: Al Programming Assistant 1:
Assistant 1 represents the control condition for the experiment.
Given the pre-selected prompt, Assistant 1 generates 5 code
suggestions for the user, surfaced in a random order. Partici-
pants using Assistant 1 always see 5 unique code suggestions.
We make this decision to reflect the current user experience
scenario of several real-world Al code generation tools, such as
GitHub Copilot’s completion panel. For example, the GitHub
Copilot completion panel in VSCode shows the user up to 10
possible code suggestions at a time. Our decision is also in-
formed by research pointing to the benefit of surfacing multiple
code suggestions [8], [31], [32], [33]. We limit the maximum
number of codes to 5 so as to allow the participant to complete
each task within 15 minutes.

2) Treatment condition: Al Programming Assistant 2:
Assistant 2 represents the TICODER-PASSFAIL (Sec. IV-A) sce-
nario, where a user provides instructions in the form of a
prompt, and then the Assistant generates test cases that the
user must validate. The user validates each test by indicating
if the test should pass or fail. Assistant 2 then uses the tests
to prune any of the 5 code suggestions that differ in behaviour
validated by the user. For example, if the user decides that the
test should pass, only codes that pass the test are retained. These
retained code suggestions are shown to the user, in random
order.

3) Treatment Condition: Al Programming Assistant 3:
Assistant 3 represents the TICODER-OUTPUT scenario
(Sec. IV-A). Instead of indicating whether a test should
pass/fail (i.e. Assistant 2 interaction mechanism), users must
provide the expected output of the test. Assistant 3 then uses
the tests completed by the user to prune any of the 5 code
suggestions that do not generate an output consistent with
what the participant defined.

Both Assistants 2 and 3 use the tests to prune away generated
codes that do not match the behaviour specified by the partici-
pant. We restrict the number of pruned codes in each task so that
a participant using Assistant 2 or 3 will always see between 3-4
code suggestions if they correctly evaluate the tests shown to
them. We make this decision to reflect the potential real-world
scenario where TICODER is able to prune away at least 1 of
the candidate code suggestions generated by an Al Assistant.
However, a participant may see less than 3 code suggestions
if they specify a contradictory or incorrect program behaviour
through their answers to the tests.

Participants interact with the assistants in an online survey
platform, but they are able to copy and paste the generated
code and tests into an IDE of their choice during the task. All
code is formatted so as to not introduce external factors into the
participants’ time. The interactive nature of the Al Assistants in
encoded into the survey logic, to mimic real-world execution
and pruning of code suggestions based on a user’s answers.
Participants can maintain their view of the tests they validated
in the survey throughout the task.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

2260

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

TABLE 11
TASKS INCLUDED IN THE USER STUDY, DERIVED FROM THE MBPP DATASET. A1 REPRESENTS THE CONTROL TREATMENT, A2 REPRESENTS THE
TICODER-PASSFAIL TREATMENT, AND A3 REPRESENTS THE TICODER-OUTPUT TREATMENT

Task Task Name Description Treatments
Write a function that returns true if the input string consists of two sequences of lowercase letters joined
Tl LOWERUNDERSCORE . ; ! P g q J Al, A2, A3
with a single underscore and false otherwise.
T2 FIRSTMISSING Write a function that finds the smallest missing number from a sorted list of integers, starting from O. Al, A2, A3
Write a function to find the maximum product formed by multiplying numbers
T3 MAXPRODUCT . - . . . Al, A2, A3
of an increasing contiguous subsequence of that array. The sequence may include negative numbers.
You want to generate a python function using the following prompt: You want to generate a python function using the following prompt: You want to generate a python function using the following prompt
Write a function that returns true if the input string Write a python function to find the smallest missing Write a function to find the maximum product formed by
consists of two sequences of lowercase letters joined number from a sorted list of integers, starting from 0 multiplying numbers of an increasing
with a single underscore and false otherwise. contiguous subsequence of that array. The sequence may
Before generating code suggestions, Al #2 wants to ask you a few include negative numbers
questions:
Using the prompt above, Al Assistant #1 generates the following 5 code Before —_— Al #3 wants to ask you a few
suggestions questions:
Should the following assertion pass or fail?
Suggestion 1 [essert fina ri sing((1,2,4,6]) == 0 |
def text_lowercase_underscore(s):
return True if any([s[i:i+2].islower() and s[i+2:i+3]={ e I assert max product([3, 4, 2]) == ?
Suggestion 2 At
I def text_lowercase_underscore(string):
Fig. 4. From left to right: examples of different interaction sequences invoked by assistant 1 on task T1 (directly display all code suggestions), assistant 2

on T2 (validate the test output on a given input), and assistant 3 on T3 (specify the output for a given input).

B. Task Design

We selected coding tasks that would satisfy the following cri-
teria, for each of the three tasks: (1) evaluating 5 Al-generated
code suggestions could be completed in fifteen minutes,
(2) there are syntactically valid but semantically incorrect code
completions given by the LLM (GPT-3 . 5) with a diversity of
error types across tasks (3) they varied in problem domain and
complexity, and (4) the LLM could generate reasonable tests
that capture the diverse error types.

1) Identifying Task Candidates: We select task candidates
from the MBPP dataset [38], a popular code generation bench-
mark, consisting of short Python functions designed to be
solved by entry-level programmers. MBPP provides a natural
language instruction, a set of tests, and a ground truth code
implementation for each problem. We cluster functions from
MBPP based on problem domain, complexity as measured
by cyclomatic complexity and size of the function in terms
of lines of code. From each cluster we identified a set of
candidate functions for which we generated a code and test
completions for using a LLM. We finally selected 3 problems
for the code completion tasks that best satisfied the selec-
tion criteria. These problems represent three distinct styles:
MAXPRODUCT is an algorithmic task involving dynamic pro-
gramming, LOWERUNDERSCORE involves using regex for string
manipulation, and FIRSTMISSING involves a recursive binary
search. The tasks are detailed in Table II.

2) Generating Code and Test Suggestions: To generate
the code and test candidates, we give the natural language
instructions from the MBPP dataset as a prompt to the OpenAl
GPT-3.5-turbo chat completion endpoint with the default
API parameters (temperature = 1.0). We then sample a set of

5 incorrect codes using the tests from the MBPP dataset, to
identify buggy programs. We also run the set of generated tests
against the set of codes to make sure at least 1 and at most 2
code suggestions are caught by the test, to restrict the number of
codes that would be pruned away. Rather than manually inject
bugs into the ground truth program, we choose to sample the
set of buggy codes from the LLM to reflect the nature of bugs
users may encounter in Al generated code.

The final set of tests and codes are fixed per task, regardless
of the treatment used. For each task there are 5 suggestions: 4
buggy codes and 1 code that is extracted as the ground truth
from the MBPP dataset. If the ground truth program extracted
from MBPP does not handle certain pre-condition violations,
we augment the code to match the task intent. For Assistants
2 and 3, we show exactly 2 of the Al generated tests for each
task. The final set of codes are either directly shown to the user
by Assistant 1, or first pruned based on the user’s evaluation of
the tests for Assistants 2 and 3.

C. Study Protocol

At the start of the study, participants are given general in-
structions around how to interact with each Al assistant, the
differences between them, and how to validate generated tests.
Participants are also given time to set up their Python inter-
preter or environment before the start of the study. The survey
interface used to interact with the Al assistants is shown in
Fig. 4. Participants are able to view the coding task description,
and depending on the treatment received, they can answer the
Al Assistant’s question, around the validation of a test case,
directly in the survey. Once code suggestions are surfaced by
the Assistant, participants are allowed to copy the code and run

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

FAKHOURY et al.: LLM-BASED TEST-DRIVEN INTERACTIVE CODE GENERATION: USER STUDY AND EMPIRICAL EVALUATION

it for debugging, along with the set of provided tests, depending
on the treatment. For each task, participants were asked to iden-
tify if the Al Assistant had returned a correct code suggestion,
and if yes, which one.

We employ a Latin Square Design to systematically vary the
pairing of tasks and Al assistants. Each participant completes
three tasks (T1, T2, and T3), each with a different Al assistant
(Assistant 1, Assistant 2, Assistant 3). The order in which the
participants use the Al assistants for each task is randomized to
account for learning effects. This design ensures that each Al
assistant is used an equal number of times across all tasks and
positions, thus balancing potential order effects and providing
a robust comparison of the Al assistants

For each task, participants are encouraged to ask any ques-
tions around the task instructions. Our aim is to approximate
the scenario where the user clearly understands what they want
the Al Assistant to generate, such that they would query the
Al Assistant with the same or similar prompt originally used
to generate code and test suggestions. Although the real world
usage of the workflow would differ, as developers often edit
their prompts, we choose to fix the prompt to control for the
generated code and tests across participants. Furthermore, we
are not interested in the task of code generation, rather code
validation, i.e. not if the user can edit the prompt to get dif-
ferent suggestions, but rather how the TICODER workflow can
help refine user provided natural language specification through
tests, and how it may impact a developer’s ability to validate
code, and locate a correct suggestion out of a set of generated
codes. While TICODER may help reduce the number of times a
user must edit their original prompt, we save this exploration
for future work.

D. Measured Variables

From the study recordings and user-submitted survey data,
we collect a set of metrics on each task completed by the
participants:

Time. We measured time taken to complete each task from
the recordings of each participant interview. Time for each task
includes time taken to evaluate any tests. We measure time on
task to determine if the TICODER workflow adds significant time
overhead due to validation of tests, as compared to the control
condition.

Correctness. The correctness is dependant on 1) the correct
evaluation of the generated tests, relative to the oracle code im-
plementation and 2) the correct selection of the code suggestion
whose behaviour reflects the intent of the prompt. Each task
has at most 1 correct answer: either one of the generated code
suggestions is correct or none of suggestions are correct.

Cognitive Load. The TICODER workflow aims to improve
code generation accuracy and reduce the number of candidate
code snippets that a user needs to review, ultimately reducing
the cognitive effort of code evaluation. However, TICODER may
also add additional cognitive effort, stemming from the effort
required to validate tests. To test the impact of the workflow
on cognitive effort, after each task we measure participants’
self-reported cognitive load via their responses to five NASA

2261

TABLE III
MIXED-EFFECTS MODEL ANALYSIS RESULTS FOR CONTROL (ASSISTANT 1)
AND TREATMENT (ASSISTANT 2, 3) CONDITIONS. (* DENOTES A
SIGNIFICANT OBSERVATION. — INDICATES NO SIGNIFICANCE.)

Metri Assistant 1 Assistant 2 Assistant 3 Pairwise

etric (Mean) (Mean) (Mean) Significance
Correctness* (0,1) 0.40 0.84 0.64 al < a2(p=0.001)
Time (seconds) 327.7 284.15 253.88 -
Cognitive al > a2(p=0.007)
Load* (0-100) 45.46 28.00 29.52 al > a3(p = 0.012)
Mental al > a2(p =0.001)
Demand* (0-20) 12.5 750 7.6 al > a3(p = 0.004)
Stress* (0-20) 8.26 3.84 6.35 al > a2(p=0.02)
Pace* (0-20) 8.13 5.38 4.70 al > a3(p=0.04)
Confidence (0-20) 13.5 15.92 15.88 -
Effort* (0-20) 11.00 7.15 6.7 al > a2(p=0.02)

al > a3(p =0.014)

TLX questions [39], a standardized approach to measuring self-
reported cognitive load used widely across disciplines [40]. We
measure the following metrics using the standard 20 point scale:
mental demand, effort, perceived success, pace, and stress.

E. Evaluation of Measured Variables

For each measured variable, time, correctness, and dimen-
sions of cognitive load, we run a mixed-effects regression
model. We use with either linear or logistic models depending
on the data type. We use the treatment condition as the fix-
effects independent variable, and participant ID and coding task
as the random-effects variables.

We conduct an omnibus test using ANOVA to calculate the
p-value of the treatment condition (the assistant used) against
the measured metrics. To correct for multiple comparisons and
conduct False Discovery Rate (FDR) correction [41] for sig-
nificant pairs of conditions. We only report Omnibus p-values
for pairs of conditions for which the results are statistically
significant, and the direction of significance. We chose mixed-
effects models to account for individual variability (partici-
pants) and hierarchical data structures (task treatment pairs),
using ANOVA for omnibus to test the significance of fixed
effects (the assistant used), and conducted FDR to provide a
comprehensive assessment of treatment effects while control-
ling for Type I errors.

VI. RQ1: USER STUDY RESULTS

Our key quantitative results are summarized in Table III. The
last column of Table III provides Omnibus p-values for pairs of
conditions for which the results are statistically significant.

A. Impact on Task Correctness

Using the mixed-effects regression model with the correct-
ness of the task (coded as O or 1), as the dependent variable:
The mean correctness was 0.40 for participants using Assis-
tant 1, 0.84 Assistant 2, and 0.64 Assistant 3. Although the
mean is higher in Assistant 2 and 3, the effect is significant for

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

2262

Assistant 2 only with (p=0.001). Looking at the set of mis-
takes made by participants, we notice several interesting ob-
servations. In general, participants using Assistant 1 are less
likely to identify the correct code suggestion from the set of 5
suggestions.

For example, for Task 1, 3/4 participants that failed to identify
the correct suggestion were using Assistant 1. Looking at their
responses, all 3 participants identified different suggestions as
correct. One participant, P7 chose to not execute any of the
code suggestions, while the other two participants P3, P5 did
write tests to evaluate the code suggestions, they were not able
to find a test to characterize the bug. Similarly, for task 3, 2/4
participants that failed to identify the correct suggestion were
using Assistant 1, and chose different candidate suggestions.
Interestingly, both participants also only tested a subset of the
codes, based on an initial guess of the correct suggestion.

Looking at the differences between Assistant 2 and 3, we
notice that mistakes stem from both incorrect evaluations of
the surfaced tests and incorrect evaluation of the code sug-
gestions. For example, in Task 2 FIRSTMISSING, the first test
case surfaced to participants by Assistant 2 is shown shown
inFig. 2b: assert find First Missing([1,2,4,6])
==0. All participants shown this test correctly answered that
this test should pass. However, when the output == 0 is obfus-
cated on the same test by Assistant 3, 50% of the participants
indicated that the test should evaluate to 0, and the other 50%
indicated that it should (incorrectly) evaluate to 3. It is interest-
ing to note that given a correct test by Assistant 2, participants
are able to correctly evaluate it, however, if Assistant 2 had
generated an incorrect test output (== 3) it may not always
be the case that participants are able to catch this bug.

However, not all tests surfaced by Assistant 2 are correct.
In Task 1, both tests surfaced by Assistant 2 had incorrect test
outputs; testing edge case scenarios that should fail. For exam-
ple text lowercase underscore ("Hello world")
== True. For Assistant 2, all participants were able to cor-
rectly identify that the test should fail. For participants using
Assistant 2, 4/5 indicated that it should evaluate to ‘False’ while
one participant indicated that it should (incorrectly) evaluate
to “True’.

In Task 3, all participants using Assistant 2 and Assistant
3 were able to correctly evaluate the tests surfaced by the
Assistants. However, 2 of the participants using Assistant 3
were not able to identify the correct code suggestion, whereas
all participants using Assistant 2 were successful.

By construction, upon the erroneous evaluation of a test case
by a user, the TiCoder workflow will prune all valid programs
that pass on the test. Therefore, participants that incorrectly
evaluate a test case will no longer see any valid Al-generated
programs and cannot correctly complete the task, unless they
specify that none of the code suggestions are correct. In the
TiCoder workflow, noisy user response guarantees that gen-
erated code does not match the ‘ground truth’ user intended
specifications. Therefore, in practice, the option to skip a test
evaluation is imperative to the usability of the workflow, and
to reduce uncertainty as the source of noisy input by the user.
Though TiCoder may significantly support users in correctly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

evaluating code suggestions, the potential for noisy feedback is
a critical risk to consider.

Key Findings Participants using TiCoder Assistant 2 are
significantly more likely to correctly evaluate Al generated
code. Participants using Assistant 3 were, on average, more
likely to correctly evaluate code suggestions compared to par-
ticipants that were not using TiCoder. However, participants
were also more prone to making mistakes while providing
test outputs that dealt with edge cases.

B. Impact on Task Time

To test the effect of each Assistant on time, we used a mixed-
effects regression model, with time as the dependent variable.
The mean time taken by participants using Assistant 1 is 327.7
seconds, 284.15 for Assistant 2, and 253.88 for Assistant 3.
Although the means differ slightly across Assistants, on average
participants using TiCoder take less time to complete the code
evaluation tasks. However, this effect is not significant.

This indicates that the additional overhead of requesting par-
ticipants to verify or provide the output for a test case does not
add significantly to the time taken to complete the task. The
time taken to evaluate code suggestions may be tempered by the
number of code suggestions pruned, and the fact that Assistants
2 and 3 provide test cases to support the code evaluation pro-
cess. One indicator of how long a participant takes to complete
a task may be tied to their code evaluation strategy. We notice
that, regardless of the treatment, participants that choose to
execute and test every single code suggestion, take much longer
than participants that scan the code suggestions and selec-
tively execute and test candidate suggestions that ‘look’ correct
to them.

For example, (P2) had relatively longer task times when
using all 3 assistants, and chose to mentally execute every sug-
gestion, identify the bug in each suggestion, and then proceeded
to programmatically execute and test their hypothesis. Due to
their thorough evaluation strategy, P2 was correct on all tasks.
However, we do not observe a correlation between time on
task and correctness, both within, and across tasks (Pearson’s
Correlation Coefficient » = 0.016,p = 0.911).

Key Findings The time taken to validate test cases, intro-
duced by TiCoder, does not introduce significant overhead to
total task time. Participants using TiCoder take, on average,
less time to complete the code evaluation tasks, however, this
effect is not significant.

C. Impact on Task Induced Cognitive Load

We analyze the self-reported cognitive load of participants
across 5 dimensions, outlined by the NASA TLX: mental de-
mand, effort, pace, stress, and confidence of the task correct-
ness. Cognitive load is reported as the cumulative sum across all
5 dimensions. Using a mixed-effects regression model with the
cognitive load as the dependent variable, we observe that partic-
ipants using Assistants 2 and 3 report significantly less cognitive

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

FAKHOURY et al.: LLM-BASED TEST-DRIVEN INTERACTIVE CODE GENERATION: USER STUDY AND EMPIRICAL EVALUATION

load. Looking more closely at the different dimensions, for
Assistant 2 participants report significantly less mental demand,
stress, and effort required to complete the task. For Assistant 3
participants report significantly less mental demand, effort, and
better pace.

Overall, we posit that this effect might be observed due to
the the reduced number of code suggestions that the user must
evaluate, and that tests serve as concrete mechanisms for which
to reason about the code; as well as provide a starting point for
more extensive testing of the candidate functions, making it eas-
ier to get the task started. For example, when asking clarifying
questions about the prompt used in a task, participants using
Assistant 1 struggle to articulate their question before coming
up with an illustrative test case. For Task 3 MAXPRODUCT,
participants using Assistant 1 had difficulty conceptualizing ‘in-
creasing contiguous subsequence’. The interviewer made sure
to answer any questions the participant had, but took care to not
give concrete examples to not bias the participant. For example,
P19 first asked “so you’re multiplying just two numbers, but it
has to be next to each other?”. When the interviewer clarified
that it could be more than two numbers, given that the sequence
is increasing, the participant articulated their question with an
example “..so if I have, 1 2 4 1, it would be I by 2 by 4?”.
In contrast, participants that had similar questions, but were
using Assistants 2 or 3, were able to more easily articulate their
questions using test cases generated by the Al Assistant.

Key Findings Participants using TiCoder, in both Assistant
2 and 3 settings, report significantly less task-induced cog-
nitive load while evaluating Al generated code. This effect
may be explained by the code pruning and test clarification
mechanisms offered by TiCoder.

VII. RQ2: BENCHMARK EVALUATION

Results from our user study, Section 5, indicate that TiCoder
can significantly improve correctness of participants evaluating
Al generated code, and that the workflow helps to reduce task-
induced cognitive load. However, it is unclear if the proposed
workflow is able to effectively generate tests that, once val-
idated, can prune and rank a set of code suggestions with
higher accuracy, on a large set of problems. To evaluate the
potential utility of the TiCoder workflow at scale, we implement
T1CODER-PASSFAIL and TICODER-OUTPUT, and conduct an em-
pirical evaluation on two state-of-the-art benchmarks for code
generation in python. We aim to answer the following research
question:

RQ2 Does the TiCoder workflow improve the accuracy of
generated code suggestions?

A. Datasets

We use two Python programming datasets for our evalua-
tion, including the sanitized version of the MBPP dataset [38],
dataset from Google, and the HumanEval dataset, introduced
in the Codex paper [1], to answer the research questions. MBPP
consists of 427 and HumanEval of 164 examples in the format

2263

described in Sec IV-B, along with the hidden tests and reference
implementations. We modify the original HumanEval dataset
to remove any (non-hidden) input-output examples that are
included in the docstring to avoid making the test generation
task trivial.

B. Evaluation Metric

For evaluating the correctness of the generated code sugges-
tions, we use the popular metric pass@k for evaluating the ac-
curacy of code-generation by LLMs with respect to the hidden
tests provided by each dataset [1]. A code suggestion is correct
if it passes all the hidden tests, and pass@k determines the
mean expected value of an arbitrary sample of size k to contain
at least one correct solution. To evaluate TiCoder, we define the
metric pass@kem to denote the rankedpass@k for the code
suggestions after m > 1 user queries. Recall that TiCoder out-
puts a ranked list of code suggestions, so pass@k@m measures
if any of the top k£ code suggestions is correct. Given that the
list of code suggestions from TiCoder are ordered, our metric
pass@k@m is not a statistical measure (unlike pass@k which
measures the statistical odds of any sample of size k containing
a correct code solution), but deterministically check if any one
of the top k ranked code suggestions is correct.

C. Models and Baselines

TICODER augments Al assistant workflows to improve the
code generation accuracy of the underlying LLM. To assess
TICODER’s benefits across various LLMs, we’ve chosen four
state-of-the-art completion models, which include a mix of
closed-source and open-source models. We provide a brief de-
scription of each model next.

* OpenAl code-davinci-002, text-davinci-003
[1] is a closed source LLM specifically designed for code
completion tasks. It is based on the GPT-3 architecture
containing 175B parameters.” text-davinci-003 is
also a closed source model of size 175B parameters, how-
ever, it is based on the GPT-3.5 architecture and Instruct-
GPT [11] and can be used for a variety of natural language
tasks. Compared to other non-chat based completion mod-
els, text-davinci-003 demonstrates highly compet-
itive performance on a number of tasks.

e OpenAl GPT-3.5-turbo, GPT-4-turbo, GPT-4-
32k The OpenAl chat models are based on the pre-
trained GPT-3 model, which is fine-tuned using Reinforce-
ment Learning with Human Feedback (RLHF) [11]. While
these models are not explicitly fine-tuned for code genera-
tion, they have demonstrated strong capabilities on several
related tasks [42], [43]. We use OpenAl APIs for the
gpt-3.5-turbo, gpt-4-32k, and gpt-4-turbo
endpoints.

* Salesforce CodeGen-6B, CodeGen2.5-7B [3] is
an open source LLM, with 6B parameters, trained
specifically to translate natural language instructions to

2 Access to this model was removed to the public by OpenAl in March 2023,
but continues to be made free and available to researchers upon request.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

2264

UP TO M=5 TEST EVALUATION INTERACTIONS. WE HIGHLIGHT, IN BLUE, THE HIGHEST ACCURACY IN EACH COLUMN

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

TABLE IV
MODEL BASELINE AND TICODER RESULTS FOR TWO PYTHON DATASETS: MBPP AND HUMANEVAL. USER INTERACTION RESULTS ARE SIMULATED FOR

Baseline TICODER-PASSFAIL TICODER-OUTPUT
Dataset Model pass@k pass@1@m pass@1@m
1 100 1 2 3 4 5 1 2 3 4 5

text-davinci-003 49.16 86.88 | 68.04 7526 7733 77.88 78.08 | 77.00 8220 83.38 83.59 83.75
code-davinci-002 4825 89.75 | 68.42 7621 7937 81.18 8197 | 7697 8551 87.10 87.56 87.71
CodeGen-6B 14.85 69.55 | 28.62 3791 4518 4997 53.67 | 39.64 5401 6234 6530 66.56
MBPP CodeGen2.5-7B 28.32 8474 | 5027 59.70 65.02 67.84 69.58 | 62.78 73.84 78.10 79.52 80.42
GPT-3.5-turbo 6191 84.77 | 75.12 7731 7821 79.04 79.03 | 7824 80.86 81.06 81.76 81.78
GPT-4-turbo 69.80 86.88 | 80.71 81.90 82.38 83.20 83.12 | 8391 84.63 8497 85.65 85.65
GPT-4-32k 67.13 8735 | 81.56 82.62 8297 83.11 83.70 | 84.78 8528 8531 8540 85.79
text-davinci-003 44.13 87.80 | 60.70 67.54 7141 72,18 72.81 | 65.02 7548 78.04 79.34 80.18
code-davinci-002 3049 9149 | 51.66 62.65 7030 73.11 7437 | 5725 745 81.99 83.70 84.50
CodeGen-6B 1141 4355 | 1532 1929 2464 28.11 29.56 | 26.34 3281 39.08 4423 48.12
HumanEval CodeGen2.5-7B 2139 76.21 | 32.82 41.03 46.51 4947 5233 | 3586 51.60 61.54 6502 68.25
GPT-3.5-turbo 59.45 89.02 | 73.16 76.48 77.01 7775 79.22 | 73.44 76.60 7845 7845 79.51
GPT-4-turbo 62.62 89.63 | 7836 80.42 80.92 80.84 81.34 | 82.22 83.17 83.42 83.62 83.84
GPT-4-32k 60.72 89.02 | 76.10 7843 79.07 79.48 79.49 | 81.37 8246 8249 8249 8254

code. CodeGen2.5-7B [44] is an improvement on
CodeGen-6B and is slightly larger, with 7B parameters.
Currently, this model is the state-of-the-art for code gener-
ation compared to other models of similar parameter size.
Our aim is to understand how TiCoder can help improve
code generation accuracy across different LLMs, and not to
identify the best performing model. Therefore, we use default
configurations for each model, and only alter temperature. We
experimented with different temperature configurations to opti-
mize performance and diversity of generated code and test sug-
gestions. Intuitively, a temperature closer to 1 allows LLMs to
provide a more diverse set of solutions, whereas a temperature
closer to 0 forces LLMs to only generate fewer solutions with
the highest confidence. Following [1], [45], [46] for all models
we settle on a temperature of 0.8, as it maximizes the number
of examples for which at least one correct code is produced
within 100 suggestions for k > 1 in pass@k. To account for
the non-determinism of the LLM generations, for each dataset,
we only query each model once to generate an initial set of 100
code and 50 test suggestions into a cache of responses. We use
the same cache across all experiments that involve the speci-
fic LLM.

D. Simulating User Response

Our proposed workflow requires real-time user response to
determine if a generated test is consistent with the user’s intent.
Therefore, in order to evaluate TICODER offfine with large-scale
benchmark datasets, we define a proxy to simulate real-time
user response.

Similar to oracle-guided inductive synthesis [15], [28], [29],
we use the reference implementation b, as an oracle to answer
if a test (, 0) is consistent with the user intent, and provide the
expected output b, (7) when the test output o does not match the
user intent (for TICODER-OUTPUT). In other words, we assume
that the intent of the user is precisely captured by the semantics
of the (hidden) reference implementation. Further, if a test
input crashes the reference code, we treat the user response as
UNDEFINED to model a precondition violation. However, this

models an idealized user interaction because, in practice, users
may sometimes be unable to answer a test query in a reasonable
amount of time (say, when asked about the value of the 100th
prime number). As observed in the results of the user study, un-
like an idealized user, real participants may sometimes provide
noisy input. For example, we observe that participants are more
prone to making mistakes while providing test outputs that dealt
with edge cases. Therefore, using the oracle as a proxy indicates
that our empirical evaluation represents an upper bound on the
improvement that TiCoder can have on the benchmarks with
real users.

E. Results

To answer RQ2, we evaluate the performance of four dif-
ferent models, with and without TiCoder in the TICODER-
PASSFAIL and TICODER-OUTPUT settings on MBPP and Hu-
manEval datasets. Table IV contains all results for each model.

The first column contains the baseline pass@1 and pass@
100 for each model on MBPP and HumanEval datasets. Note
that pass@100 denotes the fraction of examples for which an
LLM generates at least one correct code suggestion within 100
suggestions. The second and third columns contain the results
for each model, augmented with TiCoder in TICODER-PASSFAIL
and TICODER-OUTPUT settings respectively. We report the
pass@l@m metric, with m, the number of test-validation user
interactions, ranging from 1 to 5. We report pass@k@m only for
the case of k = 1 as it is the strictest setting for assessing the im-
pact of TiCoder. TiCoder improves the accuracy of pass@k@m
for higher values of k as well, but we do not present them in
the interest of space.

All three chat models, GPT-3.5-turbo, GPT-4-turbo
and GPT-4-32k demonstrate the highest accuracy for
pass@l with comparable performance across datasets. As
expected, text-davinci-003 and code-davinci-
002, the two largest completion models, achieve the fourth
and fifth baseline performance on both datasets. However,
code-davinci-002 achieves the highest pass@100
across all models and both datasets.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

FAKHOURY et al.: LLM-BASED TEST-DRIVEN INTERACTIVE CODE GENERATION: USER STUDY AND EMPIRICAL EVALUATION

Overall, we observe that both TiCoder in the TICODER-
PASSFAIL and TICODER-OUTPUT settings significantly improve
pass@l performance, across all models. As the number of
test validation queries increase from m=1 to m=5 we
also observe consistent improvement in pass@1 performance.
Although the improvement is most pronounced at m = 1, com-
pared to baseline.

For example, on MBPP, TICODER-PASSFAIL improves
pass@l baseline performance of text-davinci-003
from 49.16% to 68.04%, an absolute improvement of
18.88% within one user query. TICODER-OUTPUT improves
performance to 77.00%, which is an absolute pass@l
improvement of 27.84% within one user query. This increases
to 38.55% with 5 queries. While smaller models achieve
lower pass@1 and pass@ 100 accuracy, TiCoder still provides
modest boosts in accuracy. For the worst performing model,
CodeGen-6B on HumanEval, TICODER-PASSFAIL provides
an absolute pass@l improvement of 3.91% within one
interaction, and TICODER-OUTPUT provides an absolute
improvement of 14.93%.

In fact, we observe that TICODER can boost code generation
accuracy of smaller models to comparable performance of much
larger SOTA LLMs. For example, after just one user interaction
code-davinci-002 on MBPP achieves 68.42% accuracy
in the TICODER-PASSFAIL setting, which is in fact higher than
the pass@1 accuracy of all three SOTA chat models: GPT-4 -
32k, GPT-4-turbo, and GPT-3.5-turbo.

Finally, as expected TICODER-OUTPUT consistently pro-
vides higher accuracy compared to TICODER-PASSFAIL, since
the former allows users to fix the incorrect test output.
TICODER-OUTPUT achieves an average absolute improvement
of 45.73% in the code generation accuracy for both datasets
and across all LLMs within 5 user interactions. However, it is
worth noting that TICODER-PASSFAIL, even with its lightweight
feedback (that generalizes to richer tests or specifications), al-
ways stays within 9% of the benefits of TICODER-OUTPUT. This
demonstrates the power of LLMs to generate test cases that
satisfy user intent.

Key Findings TiCoder significantly improves pass@1 per-
formance for all studied LLMs on both benchmarks, with
performance improvements increasing with every test val-
idation interaction. TiCoder can boost small model perfor-
mance within one user interaction, outperforming pass@1
accuracy of larger models like GPT-4-32k. Additionally, the
lightweight TiCoder-PassFail scenario always stays within
9% of the performance of TiCoder-Output even in this ide-

alized simulated user setting.

VIII. DISCUSSION

A. Tests as a Developer-Al Disambiguation Mechanism

Results of our user study indicate that using tests as an inter-
active mechanism to formalize user intent, and then prune and
rank Al generated code suggestions, can meaningfully improve
programmer performance. Results show that both Assistant 2

2265

(TICODER-PASSFAIL) and Assistant 3 (TICODER-OUTPUT) are
statistically distinguishable from Assistant 1 (the control con-
dition without TICODER), where no interactive test case verifi-
cation or code pruning is used. Participants using Assistant 2
are significantly more likely to correctly evaluate Al generated
code suggestions, and report reduced task induced cognitive
load, without negative impact on time to complete each task.
However, compared to Assistant 2, participants made more
mistakes when validating tests with Assistant 3.

Further research to explore a trade-off between the ap-
proaches, in practice, should be considered. However, we find
that surfacing test cases in both forms might serve as a helpful
mechanism for which to reason about generated code. While it
is true that correctness likely depends on the evaluation strate-
gies used by each participant, participants that were shown test
cases by the Al Assistants performed significantly better.

Recent work has shown that current developer-Al interaction
workflows, as simulated by Assistant 1 in our study, have raised
new issues in the way that developers write code. Results sug-
gest a need for interaction mechanisms that can support dis-
ambiguation; a critical feature of the usability of AI-Assistants
[31], [32]. We observed how TICODER can surface a ranked list
of tests that delineate the space of possible code suggestions,
providing a concrete mechanism for identifying potential ambi-
guities in natural language used to prompt LLMs. Furthermore,
recent work has shown that developers spend significant amount
of time verifying code suggestions [14], [34]. While we do not
observe a statistically significant impact on the time taken to
evaluate Al-generated code suggestions when using TICODER,
we do observe a significant reduction in the amount of cognitive
effort required. We hypothesize that tests, which provide tangi-
ble artifacts for developers to reason about the code, can serve
as a facilitating mechanism for constructing mental models of
code functionality. Ultimately, this supports developers in the
task of code evaluation. Future work should explore this in
more detail.

B. Improving LLM Code Generation Capabilities With
Verified Test Cases

Results of our benchmark evaluation indicate that, across
all models studied, both implementations of TICODER,
TICODER-PASSFAIL and TICODER-OUTPUT, can be used to
augment the accuracy of an LLM through improved ranking
and pruning. Specifically, we observe that using tests to
better constrain the space of possible code suggestions can
improve pass @k accuracy. This highlights the fact that current
LLM capabilities may not be fully realized in practice: when
prompted for multiple code suggestions, LLMs often are
capable of generating a correct answer, but mechanisms to
better rank the set of suggestions is needed. However, the
performance boost provided by TICODER is contingent on a set
of high quality tests used by discriminative test ranking
policy (Sec. IV).

If the underlying LLM is unable to generate high quality
tests, the ranking and pruning mechanism may not be as helpful.
Future work should explore more sophisticated mechanisms for

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

2266

TABLE V
RESULTS OF PROMPTING GPT-4 WITH VALIDATION TESTS IN THE PROMPT

TICODER- Tests in Prompt
Dataset Model PASSFAIL Single (pass@k) All (pass@k)
‘pass@l@l k=1 k=5|k=1 k=35
MBPP GPT-4-32k 81.56 78.26 87.81 80.88 91.58
HumanEval GPT-4-32k 76.10 65.25 81.37 70.39 86.99

generating high quality tests that capture important specifica-
tions about the code. In this work, we explore the user study
scenario where TICODER prunes away some, but not all of the
Al generated code suggestions.

It is worth noting that if the code suggestions generated by
the underlying LLM predominantly exhibit consistent behavior,
TICODER can still be valuable to a user by providing meaningful
tests alongside the code suggestions. For example, in a scenario
where all of the suggestions are correct with respect to the user’s
intent, TICODER may not prune away any of the code sugges-
tions, but provides some guarantees about program behaviour
to the user.

C. The Value of Execution Based Pruning

The TICODER workflow helps users by automatically gener-
ating and ranking interesting test cases, instead of requiring the
user to manually write them. However, users may have a set of
test cases already in mind when querying a LLM. We explore
how such a scenario compares to the TICODER workflow by
adding the set of validation tests, i.e. the ground truth test
set provided in each dataset, to the code generation prompt.
We instruct GPT-4-32k to generate a code suggestion that
passes on the set of validation tests provided in the prompt.
We then evaluate the pass@Fk accuracy at k =1 and k =5 and
compare to the TICODERpass@1@m accuracy from Table IV.
Table V contains the result of this experiment, showing both
experiments where a single test is added in the prompt, as
well as an experiment where all available validation tests are
added in the prompt, the exact number of tests varies across
both datasets.

On both MBPP and HumanEval we observe a boost in
pass@k accuracy over the baseline prompt used Table IV. For
example, on MBPP GPT-4 - 32k achieves a pass@1 of 67.13%
with the baseline prompt (no tests) and 78.26% when including
a single test in the prompt. This increases to a pass@1l of
80.88% when all tests are added in the prompt. As expected,
this demonstrates that adding tests in the prompt does help im-
prove model performance. However, recalling the pass@Q1@1
accuracy of the TICODER-PASSFAIL, within one user feedback
loop, accuracy reaches 81.56%, out performing the pass@1
accuracy where a single test is included in the prompt by 3.31%.
TICODER even performs slightly better (0.68%) compared to the
case when all tests are in the prompt.

This indicates that even if the user supplies all test, there
is no guarantee that the underlying LLM will fulfill the user
intent and generate a code suggestion that passes on the tests.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

Conversely, with only one user interaction on a highly distin-
guishing test, obtained by ranking LLLM generated tests, code
generation accuracy greatly improves, matching the scenario
where several tests are provided to the LLM without the added
burden on the user to manually come up with test cases.

D. Considerations for Al-Generated Tests: Precondition
Violations

Tests generated by LLMs may contain pre-condition violat-
ing inputs that would cause the reference implementation to
crash or fail, and would result in a UNDEFINED response from
the user, resulting in no pruning of code.

As an illustrative case, consider from MBPP, the example of
areference implementation with (implicit) precondition that the
argument nums array is non-empty, and throws a division-
ByZero at the return statement for an empty nums array.

| from array import array

2 def zero count (nums) :

3 "nnyrite a function to find the ratio of zeroes
to non-zeroes in an array of integers."""

4 n = len(nums)

5 nl = 0

6 for x in nums:
7 if x ==

8 nl += 1

9 else:

10 None

11 return nl/ (n-nl)

The following test is ranked highest by the discriminative
ranking strategy:

| assert zero count([]) == 0, "Empty List"

For this test, out of the (deduplicated) 80 code suggestions
from code-davinci-002, 8 suggestions pass the test, 11
suggestions fail the test and 61 suggestions crash on this test.
The score for this testis 8/11 =0.73, which is the highest among
all tests. However, this test does not lead to any code pruning as
the user responds UNDEFINED in both the TICODER-PASSFAIL
and TICODER-OUTPUT scenarios since the empty array causes
the reference implementation above to fail. Thus, our results
in RQ?2 account for tests with UNDEFINED responses, reflecting
the possible real world impact of pre-condition violating tests
on the accuracy boost provided by TiCoder.

IX. LIMITATIONS AND THREATS

Generalizability of user study results. We evaluate
TICODER under highly controlled experimental conditions, and
the ability of developers to validate tests in more complex code
generation scenarios may not scale. Our study explores two
distinct test validation mechanisms surfaced in the TICODER
workflow: TICODER-PASSFAIL and TICODER-OUTPUT. On the
selected tasks, we observe that, in general, participants were
able to successfully evaluate tests in both interaction scenarios.
However, in practice specifying the output of generated tests
may not always be a straightforward or simple task. In addition,
we restrict participants abilities to edit the code prompt and

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

FAKHOURY et al.: LLM-BASED TEST-DRIVEN INTERACTIVE CODE GENERATION: USER STUDY AND EMPIRICAL EVALUATION

code suggestions, to control for variables across participants.
However, this is not a true reflection of real-world interaction
behaviours. Future work should explore the impact of TICODER
on developer productivity in real-world code settings, with
broader audiences. In addition, we only explored how TICODER
impacts the correctness of code evaluation, i.e. how well users
can disambiguate code suggestions. For example, a future ex-
periment might examine how TICODER impacts online metrics
such as code acceptance rates, or the total proportion of code
contributed by the Al system, accommodating for solutions that
provide partial correctness.

Generalization of benchmark evaluation results. We also
empirically evaluate TICODER using two popular and state-of-
the-art research Python benchmarks for code generation tasks:
MBPP and HumanEval. While both benchmarks exercise com-
mon programming patterns, they may not be representative of
real-world software development. Our findings may not gener-
alize to a different set of programs across different languages
and problem domains.

Test execution overhead. The proposed TICODER work-
flow incurs the cost of additional LLM inference, to generate
candidate tests, as well as resource costs related to executing
tests for generated code suggestions. Cost of execution may
be non-trivial, and might not scale in scenarios where users
wish to use an Al assistant to generate complex code. Neverthe-
less, the potential reliability guarantees and reduced effort for
code verification represent a valuable trade-off when weighed
against the costs of inference and execution in real-world sce-
narios. Future work should examine practical use of TICODER
at scale.

X. CONCLUSION

In this work, we propose the workflow of test-driven interac-
tive code generation using LLMs, and study it’s effectiveness
through a user study and empirical evaluation on code gen-
eration benchmarks. Our findings provide encouraging results
around guiding user intent clarification for generating more
correct programs.

In future work, we plan to extend and evaluate our implemen-
tation reflecting real-world scenarios including: more complex
programs, an in-situ user study for various software develop-
ment tasks, and an empirical evaluation on realistic benchmarks
such as CoderEval [47] and NL2Fix [43]. Finally, we plan to
explore if TICODER can be extended to richer forms of formal
specifications beyond tests, such as property based tests or pre-
and post-conditions generated from user-defined prompts [48].

REFERENCES

[1] M. Chen et al., “Evaluating large language models trained on code,”
2021, arXiv:2107.03374.

[2] A. Chowdhery et al., “PaLM: Scaling language modeling with path-
ways,” 2022, arXiv:2204.02311.

[3] E. Nijkamp et al., “A conversational paradigm for program synthesis,”
2022, arXiv:2203.13474.

[4] D. Fried et al., “InCoder: A generative model for code infilling and
synthesis,” 2022, arXiv:2204.05999.

2267

[5] E. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proc. 6th ACM
SIGPLAN Int. Symp. Mach. Program. (MAPS), New York, NY, USA:
ACM, 2022, pp. 1-10, doi: 10.1145/3520312.3534862.

[6] “Github copilot,” GitHub. Accessed Aug. 5, 2022. [Online]. Available:
https://github.com/features/copilot/

[7]1 A. Ziegler et al., “Productivity assessment of neural code completion,” in
Proc. 6th ACM SIGPLAN Int. Symp. Mach. Program. (MAPS@PLDI),
San Diego, CA, USA, S. Chaudhuri and C. Sutton, Eds., New York,
NY, USA: ACM, 2022, pp. 21-29, doi: 10.1145/3520312.3534864.

[8] J. T. Liang, C. Yang, and B. A. Myers, “Understanding the usability of
Al programming assistants,” 2023, arXiv:2303.17125.

[9] F. F. Xu, B. Vasilescu, and G. Neubig, “In-IDE code generation from
natural language: Promise and challenges,” ACM Trans. Softw. Eng.
Methodol. (TOSEM), vol. 31, no. 2, pp. 1-47, 2022.

[10] J. Austin et al., “Program synthesis with large language models,” 2021,
arXiv:2108.07732.

[11] L. Ouyang et al., “Training language models to follow instructions with

human feedback,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,

pp. 27730-27744.

O. Asare, M. Nagappan, and N. Asokan, “Is GitHub’s copilot as bad as

humans at introducing vulnerabilities in code?” 2022, arXiv:2204.04741.

[13] N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do users write more
insecure code with Al assistants?” 2022, arXiv:2211.03622.

[14] C. Bird et al., “Taking flight with copilot: Early insights and oppor-

tunities of ai-powered pair-programming tools,” Queue, vol. 20, no. 6,

pp. 35-57, 2022.

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided

component-based program synthesis,” in Proc. 32nd ACM/IEEE Int.

Conf. Softw. Eng. (ICSE), Cape Town, South Africa, J. Kramer,

J. Bishop, P. T. Devanbu, and S. Uchitel, Eds., New York, NY, USA:

ACM, 2010, pp. 215-224, doi: 10.1145/1806799.1806833.

[16] T. Lau, “Why programming-by-demonstration systems fail: Lessons
learned for usable Al AI Mag., vol. 30, no. 4, pp. 65-65, 2009.

[17] T. Zhang, L. Lowmanstone, X. Wang, and E. L. Glassman, “Interactive
program synthesis by augmented examples,” in Proc. 33rd Annu. ACM
Symp. User Interface Softw. Technol., 2020, pp. 627-648.

[18] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “CodaMosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in Proc. 45th Int. Conf. Softw. Eng. (ICSE), 2023, pp. 919-931.

[19] E. Dinella, G. Ryan, T. Mytkowicz, and S. Lahiri, “TOGA: A neural
method for test oracle generation,” in Proc. Int. Conf. Soft. Eng.
(ICSE), New York, NY, USA: ACM, May 2022, pp. 2130-2141. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
toga-a-neural-method- for-test-oracle- generation/

[20] M. Schifer, S. Nadi, A. Eghbali, and F. Tip, “Adaptive test generation
using a large language model,” 2023, arXiv:2302.06527.

[21] Y. Li et al., “Competition-level code generation with alphacode,” 2022,
arXiv:2203.07814.

[22] B. Chen et al., “Codet: Code generation with generated tests,” 2022,

arXiv:2207.10397.

S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Found.

Trends Program. Lang., vol. 4, nos. 1-2, pp. 1-119, 2017, doi: 10.1561/

2500000010.

[24] A. Solar-Lezama, “The sketching approach to program synthesis,” in

Programming Languages and Systems, Z. Hu, Ed., Berlin, Germany:

Springer-Verlag, 2009, pp. 4-13.

S. Gulwani, “Automating string processing in spreadsheets using

input-output examples,” in Proc. ACM Sigplan Notices (PoPL’11),

Austin, Texas, USA, 2011, pp. 317-330. [Online]. Available: https://

www.microsoft.com/en-us/research/publication/automating-string-

processing-spreadsheets-using-input-output-examples/

[26] N. Jain et al., “Jigsaw: Large language models meet program synthesis,”

in Proc. Int. Conf. Softw. Eng. (ICSE), 2022, pp. 1219-1231. [On-

line]. Available: https://www.microsoft.com/en-us/research/publication/
jigsaw-large-language-models- meet-program-synthesis/

K. Rahmani et al., “Multi-modal program inference: A marriage of pre-

trained language models and component-based synthesis,” Proc. ACM

Program. Lang., vol. 5, no. OOPSLA, pp. 1-29, 2021, doi: 10.1145/

3485535.

S. Jha and S. A. Seshia, “A theory of formal synthesis via inductive

learning,” Acta Informatica, vol. 54, no. 7, pp. 693-726, 2017, doi:

10.1007/500236-017-0294-5.

[29] V. Le, D. Perelman, O. Polozov, M. Raza, A. Udupa, and S. Gulwani,
“Interactive program synthesis,” 2017, arXiv:1703.03539.

[12]

[15]

[23]

[25]

[27]

[28]

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

2107.03374.
2204.05999.
http://dx.doi.org/10.1145/3520312.3534862
https://github.com/features/copilot/
http://dx.doi.org/10.1145/3520312.3534864
http://dx.doi.org/10.1145/1806799.1806833
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/
2203.07814.
2207.10397.
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
http://dx.doi.org/10.1145/3485535
http://dx.doi.org/10.1145/3485535
http://dx.doi.org/10.1007/s00236-017-0294-5

2268

[30]

[33]

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2024

R. Ji, J. Liang, Y. Xiong, L. Zhang, and Z. Hu, “Question selection
for interactive program synthesis,” in Proc. 41st ACM SIGPLAN Conf.
Program. Lang. Des. Implementation (PLDI), New York, NY, USA:
ACM, 2020, pp. 1143-1158, doi: 10.1145/3385412.3386025.

A. M. McNutt, C. Wang, R. A. Deline, and S. M. Drucker, “On the
design of ai-powered code assistants for notebooks,” in Proc. CHI Conf.
Human Factors Comput. Syst., 2023, pp. 1-16.

S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How
programmers interact with code-generating models,” Proc. ACM Pro-
gram. Lang., vol. 7, no. OOPSLAI, pp. 85-111, 2023.

M. Mayer et al., “User interaction models for disambiguation in pro-
gramming by example,” in Proc. 28th Annu. ACM Symp. User Interface
Softw. Technol., 2015, pp. 291-301.

H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading between
the lines: Modeling user behavior and costs in Al-assisted program-
ming,” 2022, arXiv:2210.14306.

P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in Proc. Extended Abstr. CHI Conf. Human Factors
Comput. Syst. (CHI EA ’22), New York, NY, USA: ACM, 2022, doi:
10.1145/3491101.3519665.

N. Nguyen and S. Nadi, “An empirical evaluation of GitHub copilot’s
code suggestions,” in Proc. 19th Int. Conf. Mining Softw. Repositories,
2022, pp. 1-5.

S. Imai, “Is GitHub copilot a substitute for human pair-programming?
An empirical study,” in Proc. ACM/IEEE 44th Int. Conf. Softw. Eng.:
Companion Proc., 2022, pp. 319-321.

J. Austin et al., “Program synthesis with large language models,” 2021,
arXiv:2108.07732.

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task
load index): Results of empirical and theoretical research,” in Advances
in Psychol., vol. 52. Amsterdam, The Netherlands: Elsevier, 1988,
pp. 139-183.

S. G. Hart, “Nasa-task load index (NASA-TLX); 20 years later,” in Proc.
Human Factors Ergonomics Society Annual Meeting, vol. 50, no. 9. Los
Angeles, CA, USA: Sage, 2006, pp. 904-908.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” J. Roy. Statist.
Soc.: Ser. B (Methodol.), vol. 57, no. 1, pp. 289-300, 1995.

T. X. Olausson, J. P. Inala, C. Wang, J. Gao, and A. Solar-
Lezama, “Demystifying GPT self-repair for code generation,” 2023,
arXiv:2306.09896.

S. Fakhoury, S. Chakraborty, M. Musuvathi, and S. K. Lahiri, “Towards
generating functionally correct code edits from natural language issue
descriptions,” 2023, arXiv:2304.03816.

E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, “Code-
Gen2: Lessons for training llms on programming and natural languages,”
2023, arXiv:2305.02309.

R. Li et al., “StarCoder: May the source be with you!” 2023,
arXiv:2305.06161.

B. Roziere et al., “Code Llama: Open foundation models for code,”
2023, arXiv:2308.12950.

H. Yu et al, “CodeReval: A benchmark of pragmatic code
generation with generative pre-trained models,” 2023, arXiv:2302.
00288.

M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri, “Formalizing
natural language intent into program specifications via large language
models,” 2023, arXiv:2310.01831.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 24,2025 at 20:09:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3385412.3386025
http://dx.doi.org/10.1145/3491101.3519665
2108.07732.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

