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Abstract—Large Language Models (LLMs) have demon-
strated remarkable capabilities in code generation, yet
their outputs often require manual verification and
correction by users.

This paper explores an auto-'

mated approach where an LLM not only generates ’

code but also executes it, evaluates the output against |
expected results, and iteratively refines the solution _
until it meets the given specifications. By integrating

execution-based validation and feedback-driven refine-
ment, this system aims to reduce human intervention
in debugging and improve code correctness, as well
as enable lower-powered models to provide correct re-
sults while reducing computation overhead. We discuss
potential applications, including interactive program-
ming environments and automated software prototyp-
ing, and outline challenges such as execution safety,
performance trade-offs, and constraints in generalizing
across diverse coding tasks. Our work seeks to advance
the automation of code generation by enabling LLMs
to self-correct through empirical validation, bridging
the gap between Al-generated code and reliable, exe-
cutable solutions.

I. INTRODUCTION

Large language models (LLMs) have demonstrated re-
markable capabilities in natural language understanding

(S

and code generation. As their adoption increases, users
seek ways to interact with these models in a more struc- .

tured and automated manner. One emerging challenge is

the need for LLMs to not only generate responses but ~
also verify and refine their outputs based on execution =

results. This is particularly relevant in environments such
as Jupyter Notebooks, where iterative code refinement can
be useful for debugging, learning, and experimentation.

Currently, existing solutions are unable to autonomously
validate generated code and refine outputs iteratively.
Current Al coding assistants such as GitHub Copilot and
OpenAl’s ChatGPT provide valuable suggestions but lack
built-in mechanisms for executing code, verifying results,
and refining responses dynamically without tedious human
intervention. Our approach integrates automated valida-
tion to iteratively refine generated code until it satisfies
the user’s specifications.

A. Example

To illustrate the problem, consider a simple task where a
user requests a Python function to compute the Fibonacci
sequency up to a given integer n. The user provides the
following prompt to the LLM: “Write a Python function

that returns a list containing the first n Fibonacci num-
bers.” The LLM then responds with the following output:

def fibonacci(n):
fib [0, 1]
for i in range(n-2):
fib.append (fib[i] + fib[i+1])
return fib

While this code is syntactically correct, it will fail for small
values of n. (e.g., fibonacci(1) should return [0], but
will instead raise an index error). Without execution-based
validation, the user would need to manually inspect and
debug the issue, increasing cognitive load on the user, and
wasting time.

When we apply execution-based refinement, the system
will run the generated code to test various inputs, e.g.,
fibonacci(1l), fibonacci(2), fibonacci(10), and de-
tect the error on n = 1. The system will then refine the
function based on the observed failures by passing the
program output back to the LLM. A corrected version will
then be generated, such as:

def fibonacci(n):
if n<=0:
return []
elif
return [0]
fib [0,1]
for i in range(n-2):
fib.append (fib[i] + fib[i+1])

n==1:

This process will then repeat until the code passes test
cases (either user-provided or LLM-generated), or until the
process times out. In this example, the second function is
valid, and so this will be provided to the user.

II. BACKGROUND
A. Large Language Models for Code Generation

Recent advancements in large language models (LLMs)
have significantly improved automated code generation.
Models such as ChatGPT and Claude leverage vast
amounts of training data to generate syntactically and
semantically correct code given a natural language prompt.
These models have demonstrated remarkable performance
in completing programming tasks. However, LLMs are
fundamentally probabilistic and do not inherently verify
the correctness of the generated code. As a result, users
must manually refine and validate the generated code,
which can be time-consuming and error-prone.



B. FEzecution-Based Validation

To bridge the gap between code generation and feedback,
execution-based validation techniques have emerged to
help close that loop without necessitating human input.
Unlike static analysis methods that assess code structure
without running it, execution-based approaches involve
running the generated code and evaluating its output
against expected results. This process can be facilitated
through unit tests, assert statements, or predefined correct-
ness criteria. By leveraging execution results, models can
be guided to refine and improve their outputs, reducing
the reliance on manual verification by users.

C. Self-Correcting Code Generation

A promising direction in automated code generation is
integrating self-correction mechanisms that iteratively re-
fine generated code based on execution feedback. Self-
correction involves identifying errors through execution
validation, diagnosing potential causes, and generating
improved versions of the code. While traditional LLMs
generate code in a single pass, a self-correcting system
introduces a feedback loop that can enhance reliability and
efficiency.

D. Static vs. Dynamic Analysis in Code Validation

In the broader context of program correctness, two pri-
mary validation strategies exist: static and dynamic anal-
ysis. Static analysis techniques, such as type checking
and linting can detect potential errors before execution
but often struggle with runtime-specific issues. Dynamic
analysis, on the other hand, involves executing the pro-
gram in a controlled environment to observe its behavior.
While dynamic approaches provide higher confidence in
correctness, they require computational resources and may
be constrained by test case coverage and security concerns.
Integrating both strategies can lead to a more robust val-
idation framework, particularly for LLM-generated code.

E. Challenges in Automated Code Refinement

Despite progress in LLM-driven code generation and vali-
dation, several challenges remain. Execution-based valida-
tion requires well-defined test cases, which are not always
available. Additionally, generated code may pass valida-
tion but this doesn’t guarantee there are no inefficiencies,
security vulnerabilities, or edge-case failures. Addressing
these challenges requires advancements in automated de-
bugging, adaptive learning strategies, and hybrid vali-
dation techniques that combine formal verification with
empirical testing.

III. RELATED WORK

Several studies have explored the integration of both static
code analysis methods and dynamic execution-based code
validation. For instance, the work by [1] showcases an on-
device model which adjusts prompts based on validation
results. Similarly, [2] propose a preference-based learning

approach that refines code generation outputs based on
user feedback. [3] propose an interactive code generation
system intended to assist users in refining generated code
through a combination of dynamic testing and user feed-
back. These studies highlight the importance of integrat-
ing validation mechanisms into the code generation process
to improve reliability and user satisfaction. [4] propose a
formal system for providing behavioral specifications to
code generation models, enabling the generation of code
that satisfies specific user-defined constraints and tests.

There are also a number of studies which incorporate
the related approach of static analysis. For example [5]
integrates static analysis techniques with dynamic testing
to improve the security of generated code.

IV. PROBLEM DEFINITION

Automated code generation using Large Language Models
(LLMs) has significantly advanced in recent years, yet
the generated code often lacks guaranteed correctness,
requiring manual verification and refinement. Part of the
issue is that LLMs operate as probabilistic models, gener-
ating code based on learned patterns rather than explicit
execution-based validation. This introduces a gap between
code that seems right, and follows the syntax rules of
its language, but fails at runtime due to logical errors,
missing dependencies, or incorrect assumptions about the
codebase.

We define the problem as follows:
Givens:

o A natural language prompt P describing a program-
ming task.

e An LLM M capable of generating code C from P.

o A specification S that defines expected behavior or
correctness citeria, either explicitly through test cases
or implicitly through execution outputs.

Objective:

e Develop an iterative refinement process where M
generates an initial code candidate Cj, executes it,
evaluates the output against S, and updates C ac-
cordingly until C), satisfies S.

A. Constraints and Challenges

EXECUTION SAFETY. Running unverified, automatically
generated code can involve security risks, including infinite
loops, memory overflows, and malicious execution. This
can be mitigated using techniques developed for preex-
isting platforms that run user-generated code such as
onlinegdb or google colab.

AMBIGUOUS SPECIFICATIONS. In many cases, the user will
not provide enough context to cover all cases, and robust
test cases may not be available, which makes validation
challenging.



COMPUTATIONAL COST. Iterative refinement may signifi-
cantly increase computational requirements, and the cost
will only increase as the complexity of the programming
task increases.

GENERALITY ACROSS TASKS. Ensuring that the approach
works across a diverse set of programming tasks across
multiple complexity levels and domain constraints adds
additional challenge, and continuous development may be
required to cover additional domains.

V. APPROACH

We propose a general framework for iterative code
refinement that integrates language model generation,
execution-based validation, and feedback-driven correc-
tion. This abstraction is not tied to a specific model,
dataset, or implementation, and can be instantiated in
multiple environments depending on task complexity,
available infrastructure, and domain requirements.

A. Overview of the Refinement Framework

The core idea is to view the process of code generation as
an optimization loop over a space of program candidates.
The system seeks a program C,, such that C,, satisfies a
specification S derived from a user prompt P. At each step,
the framework evaluates the current candidate’s behavior
and uses the results to guide the next refinement.

1) Code Generation: A language model generates an
initial program candidate Cj given a natural language
task description P.

2) Execution: The code C; is executed on a predefined
set of test cases or inputs derived from specification

S.

3) Validation: The output of the execution is compared
against the expected results in S. If C; fails to meet
the specification, error information FE; is extracted.

4) Refinement: A new prompt is constructed contain-
ing P, C;, and F;. The model is then asked to generate
a refined version Cj1.

5) Iteration: Steps 2—4 are repeated until C,, satisfies
S, or a maximum iteration limit is reached.

B. Algorithmic Formulation

The refinement process can be formalized as follows:

This loop abstracts away the specific mechanics of code
execution and validation, allowing multiple strategies to be
applied depending on context. For example, specifications
could consist of unit tests, behavior traces, or even human
feedback.

C. Feedback Construction

The effectiveness of the refinement depends heavily on the
structure and content of the feedback passed to the model.
Our framework supports modular feedback construction
strategies, which may include:

1: Input: Prompt P, Specification S, LLM M, Max
iterations k
for i =0 to k do
R; + execute(C})
if R; satisfies S then
return C;
else
E; + extract_errors(R;)
Ci+1 — ]\4(137 Ci, El)
end if
: end for
: return FAILURE

= o=

o Raw exception messages (e.g., stack traces or asser-
tion failures)

« Annotated diffs between expected and observed out-
puts

o Natural language summaries of validation failures

The structure of the feedback prompt can be adjusted to
guide the model more explicitly depending on the nature
of the task or the capability of the LLM.

D. Separation from Implementation

Although our implementation uses specific tools (e.g.,
Llama 3.2, Docker, Python), the framework does not
assume any particular technology stack. Execution may
be performed in a sandbox, a virtual machine, or a remote
server. Similarly, refinement can be done by any generative
model capable of producing code given feedback. We
refer the reader to Section VI for details of our concrete
instantiation.

E. Ilustrative Example

Consider a task where the prompt asks for a function
that returns the square of an integer. The LLM initially
generates a function that returns n % n. During execution,
a test case reveals the function raises an error on input
type None. This triggers refinement, where the model is
given both the original prompt and the observed exception.
It then adds a guard clause checking for null input. This
showcases how error-driven feedback can incrementally
produce robust solutions.

F. Evaluation Considerations

The framework can be evaluated on several axes, includ-
ing:

« Convergence Rate: How many iterations are re-
quired on average for code to satisfy S.

o Correctness: Final pass rate on a test suite.

+ Resource Efficiency: Time and computation con-
sumed across iterations.



e Model Robustness: Sensitivity of success rate to
quality of error feedback.

VI. IMPLEMENTATION

The implementation of our iterative refinement system
consists of four main components: prompt-based code
generation, containerized execution, result validation, and
feedback-guided refinement. This section describes the
tools, libraries, and strategies used to implement each
stage.

A. Libraries and Tools

We used the following libraries and frameworks in our
system:

o Llama 3.2 (local) — A freely available LLM running
locally using ollama, which enables fast inference on
local computing resources.

e Docker — Used to create isolated execution environ-
ments for running unverified code.

e Python 3.13 — Used within containers to execute
generated programs.

o Python modules — Available python modules which
help with running the LLM calls, and that the gener-
ated code could use as needed. Including re, requests,
logging, os, json, numpy, collections, matplotlib, sub-
process.

« MBPP Dataset — The Mostly Basic Python Prob-
lems dataset, containing nearly 1000 problems with
ground-truth assert-based test cases.

B. Code Generation

The LLM is prompted using a template that includes
the natural language description of the problem along
with a request to implement a Python function. Each
prompt is constructed dynamically and provided as input
to the Llama 3.2 model using a local inference API. Initial
generation does not include any test cases; these are
introduced only in the validation stage. Verbatim prompts
are provided in Appendix A.

C. Ezxecution Environment

To prevent unsafe or infinite execution, all generated code
is run inside a Docker container configured with:

o Resource limits (IGB RAM, 1 CPU core)
« Execution timeout of 15 seconds
e No access to the host filesystem or network

Each generated function is wrapped in a Python script
that includes the candidate solution and one or more
test cases drawn from the MBPP dataset. The script is
copied into the container and run using the standard
Python interpreter. Execution output is captured using
stdout/stderr redirection and parsed for validation.

D. Validation

Validation is done using the assert statements provided
in the MBPP dataset. These statements serve as ground
truth for correctness. If the generated code raises an
exception or fails an assertion, the error message and
traceback are extracted from the captured output. This
information forms the basis of feedback provided to the
LLM.

E. Feedback Mechanism and Refinement

When validation fails, a new prompt is constructed for the
LLM. This refinement prompt includes:

o The original problem description
e The previously generated code
e The error message or unexpected output

This process is repeated until either the function passes all
validation tests or a maximum of 5 refinement iterations
has been reached.

F. Implementation Challenges

A few notable complications arose during development:

e LLM Output Quality: Initial attempts to use a
smaller local model with only 1 billion parameters
resulted in nearly all generated code failing validation.
These outputs also frequently failed to follow expected
formatting, making it difficult to extract usable code
automatically.

+ Code Extraction Robustness: Even with a more
capable LLM, reliably extracting code was challeng-
ing. Early attempts to format the model output as
JSON were largely unsuccessful, as the model often
violated JSON syntax. Switching to Markdown-style
output improved consistency, but some completions
still omitted closing code blocks or included explana-
tory text within the code, requiring additional post-
processing logic. Still, occasional failures to extract
code correctly were observed and handled by re-
prompting the LLM.

« Computing Resource Constraints: Running the
LLM locally meant that the system was limited by the
available CPU and RAM on the host machine. This
meant that running the tests took several hours, and
the system was unable to run multiple tests in parallel.
This could be improved by using a more powerful
machine or running the LLM on a cloud service.

VII. EVALUATION

To evaluate the effectiveness of our iterative code refine-
ment framework, we conducted experiments focusing on
the following key metrics:



o Correctness: The percentage of tasks for which the
final generated code passed all test cases, especially
compared to those which passed without refinement.

« Convergence Rate: The average number of itera-
tions required for the framework to produce a correct
solution.

+ Robustness: The framework’s ability to handle di-
verse prompts, including ambiguous or incomplete
specifications.

A. Ezperimental Setup

We evaluated our framework using the MBPP (Mostly
Basic Python Problems) dataset, which consists of 974
Python programming tasks with ground-truth test cases.
Each task was provided as a natural language prompt
to the LLM, and the framework iteratively refined the
generated code until it satisfied the test cases or reached
the maximum iteration limit of 5.

The experiments were conducted on a local machine with
the following specifications:

o« CPU: Apple M3
« RAM: 16GB

e LLM: Llama 3.2 running locally with 3.2 billion pa-
rameters

B. Results

Correctness: Out of the 974 tasks, the framework suc-
cessfully generated correct solutions for 45.5% of the tasks.
The remaining 54.5% failed mainly due to the weakness of
the model being used. However, when comparing the re-
sults to the baseline of using the LLM without refinement,
the framework improved correctness by 46%. The model
was able to generate correct solutions for 27% of tasks
without refinement, and 45.5% with refinement. It’s also
possible that more correct solutions could be generated
with more rounds of refinement, but we limited the number
of iterations to 5 to avoid excessive computation.

Convergence Rate: On average for problems where a
solution was found, the framework required 1.97 iterations
to produce a correct solution. Tasks with well-defined test
cases and detailed prompts converged faster, while tasks
with edge cases or ambiguous specifications required more
iterations.

Robustness: The framework demonstrated robustness in
handling diverse prompts, but performance degraded for
tasks with incomplete specifications or highly complex
logic. In many cases, the framework often failed to con-
verge within the iteration limit. This would likely improve
with a more powerful model, as the LLM used in this
experiment was limited to 3.2 billion parameters.
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Fig. 1. Iteration results for the iterative code refinement framework.
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Fig. 2. Iteration results for the iterative code refinement framework.

C. Discussion

The results demonstrate that our framework effectively
improves the correctness of LLM-generated code through
iterative refinement. However, the computational cost and
reliance on well-defined test cases highlight areas for fu-
ture improvement. Optimizing the feedback mechanism
and incorporating static analysis techniques could further
enhance the framework’s efficiency and robustness.

Furthermore, the low-budget model used in this experi-
ment was unable to generate correct solutions for many
tasks, and so the results may not be representative of
the performance of larger models which can handle more
complex problems. Future work will explore the use of
larger models, as well as the integration of static analysis
techniques to improve the framework’s performance.
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VIII. CONCLUSION 25

We have presented a framework for iterative code re-
finement that leverages execution-based validation and-7
feedback-driven correction to improve the correctness of”®
LLM-generated code. By integrating these components, we.,,
aim to reduce the reliance on manual verification and en-o
hance the reliability of Al-generated code. Our evaluation
on the MBPP dataset demonstrates the framework’s po-,,
tential to improve correctness and convergence rates, while
also highlighting challenges related to execution safety,”
computational cost, and robustness across diverse tasks.
Future work will focus on optimizing the framework’ss:
performance, exploring the integration of static analysis
techniques, and evaluating the approach across a wider
range of programming tasks and domains. By addressing
these challenges, we aim to advance the automation of :
code generation and refinement, ultimately bridging the *
gap between Al-generated code and reliable, executable
solutions.

oW

o

APPENDIX A
LLM PROMPTS

The following are the prompts used to generate code ®
and provide feedback to the LLM during the iterative
refinement process.

<

10
First, the prompt used to generate the initial code is as
follows: 1
12
13
14

# 1llm settings
PROGRAMMING_LANGUAGE =
HOSTNAME = "localhost"
PORT = 11434
OLLAMA_API _URL = f"http://{HOSTNAME}:{PORT}/api/

generate" 16
MODEL = "llama3.2:latest"
MAX_ITER = 5

"python"

15

DEFAULT_PROMPT = £"""

You are a {PROGRAMMING_LANGUAGE} expert. You will be
given a prompt to create a { 19
PROGRAMMING_LANGUAGE} funcion.

Your task is to create a {PROGRAMMING_LANGUAGE}
function that solves the problem described in
the prompt.

Create the simplest function that solves the problem 23

24

*% IMPORTANT *3*

- The response should be in markdown format, with
the code block labeled as '{PROGRAMMING_LANGUAGE
e

- The response should contain two parts:
and code, in that order.

- Example: Explanation sentences.\n "~ " {
PROGRAMMING _LANGUAGE}\n# code here\n” ™~

- There should only be ONE explanation section, and 30
ONE code block in the response. 31

- No other text should be included in the response.

26
27
explanation

29

**EXPLANATION RULES**
- The explanation should be no more than 3 sentences

32

. 33
- The explanation should describe the code, the 34

approach, and any important details.

**xCODE RULES *x*

- The function should be a valid {
PROGRAMMING_LANGUAGE} function.

- The function should be named “candidate’.

- The function should not contain any print
statements.

- The function should contain explanatory comments.

- Only output a single function. If you are unsure,

output the most universal version of the

function.

subfunctions are needed,

inside the main function.

code should be outside the function.

test cases should be included in the code block

- If they should be defined
- No
- No

The prompt used for subsequent iterations is as follows:

CORRECTION_PROMPT = f£"""
You are a {PROGRAMMING_LANGUAGE} expert. You help to
correct user-generated code and fix errors or

failed tests.

The code below is not valid. You will be given:

- the original prompt for the code

- the code that was generated

- the error message from the test

Your task is to correct the code and make it valid
and pass the test.
The user code is not necessarily well-structured,
you should feel
free to rewrite, refactor,
needed.

SO

and improve the code as

The following rules must apply to your response:

** IMPORTANT **

- The response should be in markdown format, with
the code block labeled as '{PROGRAMMING_LANGUAGE
3.

- The response should contain two parts:
and code, in that order.

- Example: Explanation sentences.\n "~ {
PROGRAMMING_LANGUAGE}\n# code here\n” ™~

- There should only be ONE explanation section,
ONE code block in the response.

- No other text should be included in the response.

- The function produced MUST be named ~“candidate”,
or the test cases will fail.

explanation

and

**EXPLANATION RULES**
- The explanation should be no more than 3 sentences

- The explanation should describe the code, the
approach, and any important details.

**CODE RULES *x*

- The function should be a valid {
PROGRAMMING_LANGUAGE} function.

- The function should be named “candidate .

- The function should not contain any print
statements.

- The function should contain explanatory comments.

- Only output a single function. If you are unsure,

output the most universal version of the

function.

subfunctions are needed,

inside the main function.

code should be outside the function.

test cases should be included in the code block

they should be defined



36 See the below for the original prompt, the code that
was generated, and the error message.

38 The original prompt is:
10 %%%APROMPT % %%
42 The code that was generated is:

44 ~ " "{PROGRAMMING_LANGUAGE}
%%%CODE %% %

IS
o

48 The error message is:

o %%AHERROR%%%
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